

Subsurface Launcher for Joint Services Payloads

Dr. Jon Yagla, Dr. Martin Soifer, Chris Weiland and Prof. Pavlos Vlachos

NDIA Gun and Missile Systems Conference

March 27-31

Sacramento, CA

Engagement Systems Department Naval Surface Warfare Center Dahlgren Division Dahlgren, Virginia, USA

The Team

- Sponsor Wah H. Lee, NSSC 073R
- Technical Lead NSWC G64
- Submarine Applications Electric Boat
- Academic Virginia Tech

CCL Operation

- Weapon is housed within inner cylinder
- Inner cylinder guides weapon during initial stages of launch
- End-cap turns exhaust gases 180⁰ into annular uptakes ... formed by gap between inner and outer cylinders
- A plate with exhaust ports located at the base of the weapon (not shown), in conjunction with the annular uptake, serves to control exhaust gas flow, missile base-pressure and thrust augmentation

CCL ATACMS Launch

Time-Sequence Photo of ATACMS Launch from CCL at NSWCDD

Water Piercing Missile Launcher

Notional Pressure Hull Installations

Notional Installations in Attack Submarine

Detail of Payload in Attack Submarine Sail

NetFires missiles for "Stand and Fight" capability against small surface craft (swarms)

Computer Simulation of Water Piercing Missile Launch

Rocket Powered, CFDLIB, and Air Powered Flow Fields

Elevated Test Tank at ARL

Breech and CCL Under Test Tank

Water Piercing Missile Launcher Restrained Firing with 7-Inch Diameter CCL and MK66 Rocket Motor

Missile for Water Piercing Missile Launcher Fly-out Experiment

Simulated Army TCMS missile made from an inert projectile

2.75-inch MK 66 Rocket Motor

Scale Water Piercing Missile Launcher with Simulated ATACMS Missile

Fly-out Experiment

Flyout Movie Goes Here

Recovered Simulated Army TACMS Missile

Fuze Plugs with Holes on Centerline and Dessicant to Detect Moisture Intrusion

Summary

•Water Piercing Missile Launchers have been analyzed with Computer Fluid Dynamics Methods

•Air-powered, Sub-scale, and Scale Models Representing Operational Missiles have been Built and Tested

•Empirical Models have been used to Correlate the Data and Develop a Predictive Model for Larger Systems

•The Water Piercing Missile Launcher Holds Promise as Payload Launcher for Submarines