

Cost Reducing Material For

40mm Practice Cartridges

Christopher Summa

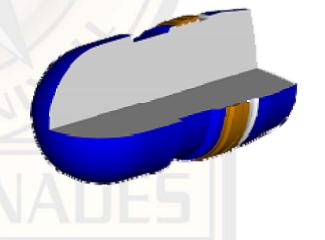
U.S. ARMY/ARDEC

40mm Grenades Special Projects

973-724-4666

christopher.summa@pica.army.mil 30 March 2006

- M385A1 One-Piece Projectile Feasibility Study
 - Objectives
 - Reduce unit cost
 - Integrate rotating band to the projectile body
 - Obtain ballistic match to M385A1
 - Requirements
 - Color Blue #35109, FED-STD-595
 - Maintain Bore Life 30,000 rounds
 - Survive Linking/De-linking
 - Accept Ink Stenciling
 - Fire from Mk19 GMG
 - Preserve Physical Properties
 - Profile, Mass, CG, Moments of Inertia


- What is the 40mm M385A1 Practice Cartridge?
 - Check-out round for the Mk19 GMG Mod 3
 - Fired from a linked configuration
 - Muzzle Velocity = 240 m/s
 - Peak Chamber Pressure = 95 MPa
 - Aluminum projectile body with swaged copper rotating band
 - Approximately \$6.00 per projectile

- Current Fabrication of M385A1 Projectile:
 - Profile machined from aluminum bar stock
 - Copper rotating band swaged onto projectile body
 - Final machining performed
 - Projectile anodized

- Conception of M385A1 One-Piece Projectile:
 - Desire for integral rotating band
 - Aluminum projectile with integral band
 - Hard anodized aluminum rotating band may erode bore
 - Thermoplastic projectile with integral band
 - Commercial thermoplastic specific gravity too low to match to current projectile weight (245g)
 - Cannot obtain ballistic match

- Advantages of Polymer-Metal Powder Composite
 - Can composite almost any commercial-grade injection moldable polymer with metal powder
 - Machinable & Injection moldable
 - Tunable material density
 - Colorable
 - Emboss/Engrave instead of Stencil Marking
- Functional Advantages
 - Reduce cost with injection molding and insert molding
 - Less effort to design in Ballistic Match
 - Combine components/features to reduce number of parts
- ARDEC Value Engineering submission #20052007

- M385A1 One-Piece Projectile Feasibility Study
 - Prototype Mold
 - Single-cavity with parting line along axis
 - Core placed on aft side of projectile
 - Challenges
 - Preliminary/Static FEA shows minor ballooning in saddle area
 - Core volume increases chamber volume which may reduce MV

- Outline of Feasibility Study:
 - Phase 1

☑ Contract Awarded	9/05
☑ Ten Materials Recommended	11/05
☑ Uncolored Test Specimens Produced	12/05
☑ Physical Properties Tested	1/06
▼ FEA Analysis Performed	1/06
☑ Colored Test Specimens Produced	2/06
☑ Physical Properties Retested	2/06
✓ Four Materials Graduated to Phase 2	2/06

- Competitive Bidding Process
 - Five companies evaluated based on the following criteria:
 - 1. Description of Task Fulfillment
 - 2. Polymer/Metal Powder Selection and Ability to Produce Integrally Blue Compounds
 - 3. Compound/Injection Molding Experience and Current Products Sold
 - 4. Mold Fabrication and Adjusting for Different Candidate Compounds
 - 5. Ability to Dimensionally Inspect Final Projectile
 - Ecomass Technologies awarded contract due to superior marks in all fields.

- Feasibility Study: Phase 1
 - Ten initial material recommendations given by Ecomass
 - Based upon stated specifications and requirements for M385A1 practice round
 - 5 thermoplastic polymers combined with 2 different metal fills

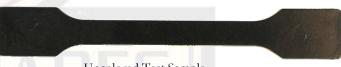
Polymer Matrix

- Super Tough Nylon 6/10 (PA6/10)
- Co-Polyamide (COPA)
- Super Tough Polyphthalamide (PPA)
- Polyoxymethylene (POM)
- Super Tough Polybutylene Terephthalate (PBT)

Metal Powder Fill

• Stainless Steel

• Tungsten


- Feasibility Study: Phase 1
 - Uncolored test specimens for ten materials compounded and molded
 - Material properties tested and quasi-static FEA Analysis performed
 - Properties tested include:
 - Melt Temp
 - Shear Modulus
 - Ultimate Tensile Strength
 - One material cannot be compounded due to chemical incompatibility
 - Four materials dropout due to insufficient UTS
 - Remaining five materials retested with color and reran through FEA
 - Four materials down-selected for Phase II of study

Colored Test Sample – Match to M385A1 spec color

Colored Test Sample – Blue shade typical of M918 TP

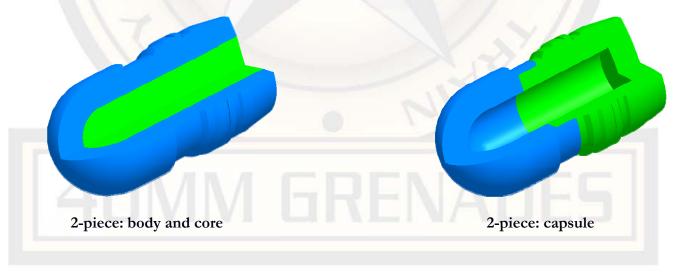
Uncolored Test Sample

- Outline of Feasibility Study:
 - Phase 2

☑ Prototype Materials Compounded/Retested	3/06
☐ FEA Analysis Updated	3/06
☐ Final Design Submitted	3/06
☐ AIE Package Submitted	3/06
☐ Rapid Prototype SLA Models	4/06
☐ Construct Prototype Tooling	4/06
☐ Injection Mold Projectiles	5/06
☐ Inspect Projectiles Per Design Drawing	5/06
☐ Final Report from Contractor	5/06

40MM GRENADES

- Feasibility Study: Phase 3
 - Testing
 - Assemble projectiles with M169 cartridge cases
 - Fire belts of 10 from Mk19 GMG at hot, cold and ambient
 - Soft-catch fired projectiles for post inspection
 - Subject projectiles to moisture, temperature, and humidity for discoloration and growth


- Post-Feasibility Study
 - Ballistics Mismatch M385A1, M918 & M430A1
 - Modify M385A1 One-Piece projectile to match profile and physical properties of M918 and M430A1
 - Using M430A1 profile can eliminate issues with one-piece saddle thickness.

- Post-Feasibility Study
 - Ballistics Mismatch M385A1, M918 & M430A1
 - May need to use alternative to one-piece design to acquire correct mass, CG, moments of inertia.
 - Multiple Piece
 - Mold-in-mold
 - Structural foam core
 - Chamber volume increase with one piece design
 - Propellant load may need to be adjusted to achieve correct MV.
 - Can also eliminate problem with multiple piece design or added core.

- Post-Feasibility Study
 - If material substitution proves feasible...
 - Material Characterization at high strain rates
 - Pre-Qualification Testing
 - Larger firing samples
 - Full environmental testing
 - Rough handling
 - Production Mold & Qualification Testing
 - Cost savings estimate based on:
 - 300K to 400K rounds per year
 - 5 years production contract
 - 4-cavity mold with slides to eliminate parting line along axis

- Follow On Work
 - Mixed Belt M385A1 One-piece with M918 TP
 - Mate M385A1 One-Piece projectile with Single Chamber Cartridge Case (SCCC)
 - M918 Body Insert
 - M781 Projectile Body

