

An advanced weapon and space systems company

LW30 Spiral Development Marking Round Technology Demonstration

G. Duncan Langlois Munitions Engineer – Energetic Materials Technology ATK Ammunition and Energetics Radford Army Ammunition Plant

- The basic technology to provide high impact signature rounds for improved night-time training was demonstrated using high speed digital photography in indoor range conditions
- Illumination of modified LW30 training rounds provides comparable signature to high explosive tactical rounds at a significant cost savings and increased safety
- This successful demonstration will be offered for incremental development projects aimed at increasing the effectiveness of existing LW30 systems

Objectives

- Existing System Review
- Design Basics
- Initial Testing
- Demonstration Testing
- Future Work

M230 Weapon System

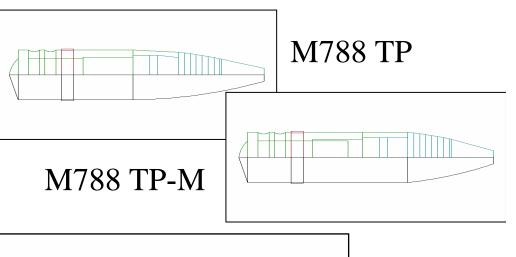
- 30mm M230 Chain Gun Automatic Cannon
- Caliber: 30mm X 113mm LW30 Linkless
- Effective Range: up to 4000 meters
- Rate of Fire: 635 ± 25 Shots per Minute
- Platforms:
 - AH-64 / AH64A Apache Attack Helicopters
 - MH-60 Variants SOAR Blackhawks
- Targets:
 - Light Armored Vehicles
 - Deployed Infantry
 - Targets of Opportunity

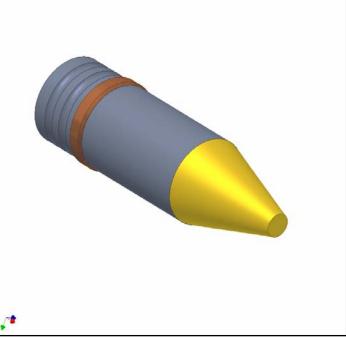
LW30 Ammunition – 30mm X 113mm

An advanced weapon and space systems company

M788 TP

- Training Projectile matched to M789
- Basic ballistic match
- Only fielded training round for M230 systems


M789 HEDP


- High Explosive Dual Purpose
- Combined fragmentation and shaped-charge effects
- Only fielded tactical round for M230 systems

Marking Round Basics

- M788 TP-M
- Modified M788 training round
 - Minor metal parts modifications to facilitate access to the internal cavity
 - Incorporation of lowpower energetic materials to provide marking illumination
 - Fuzeless design
 - Aerostable over short ranges <250m

An advanced weapon and space systems company

 Technology Demonstrators were loaded with 1 of 2 possible marking compounds

<u>Compound A</u>

- Fast burning with moderate sensitivity and moderate illumination

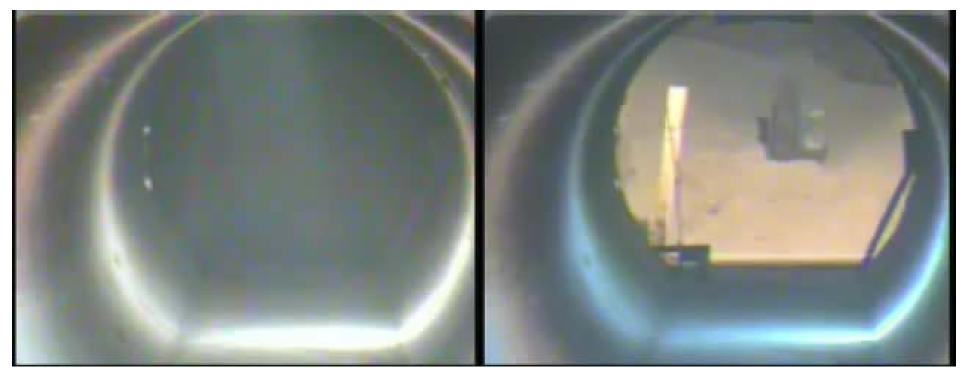
<u>Compound B</u>

- Slow burning with low sensitivity and intense illumination

Marking compounds selected based upon burn rate, sensitivity, and illumination effect

Initial Testing - Metal Parts Reliability

- Initial testing was done on M788 TP-M without energetic materials onboard to test changes in metal parts
- High-Speed Shadowgraph Testing showed no nose-separation or buckling based body failures


- Increased projectile weight alters pressure/velocity profile
- The intent of the technology demonstration was not to provide ballistic match but provide a safe demonstration platform
- Firing test at various charge weights were conducted to address concerns about pressure margin and acceptable velocity performance
- Analysis showed safe operating pressures at production powder load with acceptable muzzle velocities

Charge Establishment	Muzzle	Chamber	
Testing	Velocity	Pressure	Action Time
80% Charge Weight	681	222	3.27
90% Charge Weight	740	277	3.04
100% Charge Weight	782	303	2.65
Production Target	800	335 (Max)	4.00 (Max)
	m/s	MPa	ms

Marker Performance Testing

- Shots made against ¼ steel targets in sand
- Baseline Training rounds showed no appreciable impact signature from 200 meters
- TP-M rounds showed similar impact signature to HEDP at 200 meters under full light and unlit conditions

- Bullet will be redesigned to provide stable flight at longer distances
- Increased energetic payload for more intense illumination
- Implement safer energetics like Reactive Materials to work toward IM solutions
- Design for production Initiatives, use DFSS to help the path to production

Technical demonstration successful and shows significant promise