2006 DMSMS Conference Pb-free Solder Technical Issues (Not Including Tin Whiskers)

Dr. Stephan Meschter BAE Systems LEAP WG Technical Guidelines Handbook Leader Johnson City, NY Phone: 607-770-2332, Email: stephan.j.meschter@baesystems.com

What's the problem; it is just solder?

- Who would consider changing the alloy of an airplane wing or a turbine blade without a lot of materials testing and analysis?
- It is no longer "just solder"
- Surface-mount technology changed the game:
 - Solder provides structural connection
 - Solder behaves like a viscoplastic material
- During the SMT insertion into high performance applications in the '80s, much was learned that can be applied to Pb-free
- Pb-free solder is different from Sn-Pb

Cross-polarized inspection reveals SnAgCu BGA ball with ~10 grains

L.P. Lehman and S.N. Athanvale et. al, "Growth of Sn and Intermetallic Compounds in Sn-Ag-Cu Solder," J. Electronic Materials, Vol. 33, No. 12 (2004) pp 1429-1439.

Solder Microstructure

- The mechanical response of Sn-Pb Solder is dominated by the micron-scale inclusions of the relatively soft Pb
- SnAgCu structure is more complex mechanical response is different

Conical PbSn Eutectic

Reflow at 250 °C; Cooling Rate 0.1 °C Pb-free SnAgCu near eutectic

E. Cotts, Binghamton University, at the Universal Instruments Consortium Meeting, June 2006

Crack development variation observed

E. Cotts, Binghamton University, at the Universal Instruments Consortium Meeting, June 2006

cycles -45 to +125 °C

Alloy additions impact grain structure

• A little bit of copper significantly changes the grain structure

~Sn-3.5Ag

~Sn-3.5Ag-0.6Cu

L.P. Lehman and S.N. Athanvale et. al, "Growth of Sn and Intermetallic Compounds in Sn-Ag-Cu Solder," J. Electronic Materials, Vol. 33, No. 12 (2004) pp 1429-1439.

Failures in electronics hardware

Environmental conditions

- Temperature
- Vibration
- Acceleration
- Moisture
- Pressure
- Ionic contamination
- Radiation

Operational conditions

- Power
- Current
- Voltage

People

• Training/skill level

Failure modes

- Parameter drift
- Short
- Open

Types of failure

- Overstress
- Wearout

Failure mechanisms

Failure mechanism interactions

- Complimentary
- Competitive

What makes this challenging?

Pb-free solder:

- Multiple Pb-free alloys
- Higher Sn content
- Higher processing temperature
- Higher strength/more creep-resistant
- Different fatigue characteristics
- Solder alloy compatibility
- New solder fluxes
- Greater copper dissolution
- Less wetting/different appearance

Intermetallic

- Increased Sn content yields thicker
- (i.e., weaker) IMCs
- Voiding of Cu from IMC growth
- Rapid loading is main concern
- •Sn-Cu-Ni IMCs nuances

 Component

 Printed Wiring Board

 Pb-free solder thermo-mechanical behavior is different from Sn-Pb

What else?

Printed Wiring Board and Component

- New materials that can withstand higher soldering temperatures
- CAF/SIR Service risk from high soldering temperatures and new fluxes
- Delamination/decomposition/moisture sensitivity

Plated through hole

- Higher soldering temperature increases stress
- Pad susceptible to dissolution during "Wave Solder"
- New aspect ratio design rules?

Pb-free transition is driving changes to a majority of the material system

In addition, the military has:

- Qualification requirements
 - Both "as built" and when mixed with Sn-Pb
 - Rework/repair: single(multiple) alloy(s) and process(es)
- 20 yr. service, configuration management, solderable shelf life, and solder compatibility issues:
 - SAC, SnCu, Sn-Pb, low melting point alloys, bismuth bearing alloys
- Long-term harsh-service reliability considerations
 - Solder reliability is dependent on the parts, the PWB, the metallurgy and the environment
 - Reliability requirements differ significantly across applications
 - Thermal cycling, vibration/shock, humidity, and other environments

Solder interconnect fatigue

•Modeling: Fatigue life can be related to any parameter directly proportional to the damage in the solder failure site

- Some models use cyclic strain range
- Some models use cyclic work dissipation due to cyclic hysteresis

Military equipment experiences a broad range of cyclic loads

Real missions have combined thermal/vibe/shock

Need to validate combined models

Vibration/shock loading

- Vibration/shock performance was a tough topic with Sn-Pb solder,
 - Pb-free didn't make things easier
- Not much vibration/shock data available
 - Cell phone drop-shock testing driving commercial industry
 - Data from JCAA/JGPP testing
- What heritage Sn-Pb tests need to be different for Pb-free?
 - Intermetallics grow thicker
 - Does there need to be thermal preconditioning prior to vibration?
 - Should vibration/shock testing be performed over temperature?
 - CALCE project under way to address some of these issues

MIL-STD-810 tests may need revision for Pb-free

JCAA/JGPP tests

- Full military environmental testing of many part types, two Pb-free solders (SAC and SAC with Bismuth) and various rework combinations.
 - http://www.jgpp.com/projects/lead_free_soldering/presentations.html
- Recently completed -55 to +125 °C thermal cycling test
 - 4743 thermal cycles completed during the 12 month test duration
 - CLCC 20: SACB > SnPb > SAC
- In-process thermal cycle testing -20°/+80°C
 - As of April 2006, 10300 thermal cycles completed. Need ~3000 more.
 - CLCC 20: SAC = SACB > SnPb
- Combined environment (thermal cycling + vibration)
 - CLCC 20: SACB > SnPb > SAC
- Vibration (room temperature)
 - CLCC 20: SnPb > SACB > SAC

Need to take test results as a whole Performance depends upon environment

Too Bad SACB is

incompatible with

Sn-Pb

Mixing of alloys – today's problem

It would be better not to, but if you have to, what can be done to help mixing without getting hotter?

P. Snugovsky (2006)

Undesirable:

A moderate volume of Sn-Pb results in partial dissolution of Pbfree Ball

Better:

More Sn-Pb results in a fairly uniform composition and phase distribution

Increasing deposited paste volume improves mixing. Process details affect both initial manufacturing and repair

Technical gap analysis

- Topics needing further study for high performance applications
- Combined environments:
 - High temperature, low temperature
 - Vibration, shock
- Thermal cycling dwell and mean temperature variation (CALCE Project under way)
- Humidity/SIR/CAF Testing to failure (CALCE Project under way)
- Solder processes/flux assessment
- Workmanship guidance
- Printed wiring boards dissolution, PTH, laminate integrity
- Components moisture/temperature sensitivity
- Mixed alloys (Sn-Pb/Pb-free) including double sided reflow assemblies.
- Repair of large complex devices

(JCAA/JG-PP Test Board)

A Considerable amount of data is still needed

Summary

- Much Good Data Available
 - Need to be sure assembly stiffness and test details are relevant to application
 - Check that adequate thermal cycling dwell time is used to allow proper Pb-free solder alloy creep (dwell time can be modeled, but should be longer than Sn-Pb)
- Considerable data still needed as indicated in gap analysis
- Pb-free alloy(s) are not a drop in replacement for Sn-Pb for all applications
 - Need to examine the details
 - The reliability of solder is a function of the material and the application where it is used.
- Service Center Logistics will be important
 - Configuration management
 - Components/PWB: Finish, temperature rating, moisture sensitivity, shelf life
 - Repair process: temperature profile, solder type, flux

E. Cotts, Universal Instruments Consortium Meeting, June 2006