2006 State of Software Measurement Practice Survey

NDIA CMMI Technology and Users Conference

Mark Kasunic
November 15, 2006
Agenda

Introduction
 • Survey objectives & approach
 • The population being studied
 • Sampling plan

Results
 • Response rates and outcome
 • Population demographics
 • Attitudes and beliefs about measurement use
 • Measurement guidance that is used
 • Measures that are reported

Summary Observations
Survey Objectives

The objectives of this survey are to characterize

• the degree to which software practitioners use measurement when conducting their work

• the perceived value of measurement

• approaches that are used to guide how measures are defined and used

• the most common types of measures used by software practitioners
Characteristics of the Survey

We used a structured, self-administered questionnaire that was available both via the World Wide Web and in paper form.

The questionnaire was designed to be short (17 questions) and easy-to-complete with questions phrased in close-ended format. Several questions allowed for short open-ended responses.

Stratified random sampling was used to select candidate respondents from a population comprised of members from three different subpopulations.

Candidate respondents were offered incentives to participate including

- platinum membership to the Software Engineering Information Repository (SEIR) that provides access to documents otherwise unavailable through regular membership

- early access to the survey results
The Population Being Studied

The population that we would have *liked* to have studied is the entire existing body of software practitioners in the world. However, such a representative database was unavailable to us.

The population that we did use for this study included individuals who:

1. were entered into the SEI customer relations database during 2004-2005
2. registered to gain access to the SEI’s Software Engineering Information Repository (SEIR) during 2004-2005
3. became an SEI Member during 2004-2005
Important to Remember When Interpreting Survey Results

Survey results can not be generalized beyond the population used in this study.
Sampling Plan

<table>
<thead>
<tr>
<th>Subpopulation</th>
<th>Population Size</th>
<th>Sample Size</th>
<th>Adjusted Sample Size</th>
<th>Actual Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Relations</td>
<td>6,398</td>
<td>603</td>
<td>2010</td>
<td>1,670</td>
</tr>
<tr>
<td>SEI Members</td>
<td>1,242</td>
<td>434</td>
<td>1,242</td>
<td>951</td>
</tr>
<tr>
<td>SEIR registrants</td>
<td>7,540</td>
<td>612</td>
<td>2040</td>
<td>1,539</td>
</tr>
<tr>
<td>Total</td>
<td>15,180</td>
<td>1,649</td>
<td>5,292</td>
<td>4,160</td>
</tr>
</tbody>
</table>

Calculated for: precision of ± 2.5% confidence of 95%

Adjusted based on estimated 30% response outcome.

- Invalid email addresses
- Non-responses
- Ineligible respondents
Agenda

Introduction

• Survey objectives & approach
• The population being studied
• Sampling plan

Results

• Response rates and outcome
• Population demographics
• Attitudes and beliefs about measurement use
• Measures that are reported

Summary Observations
Response Outcome Rates

Minimum Response Rate

\[RR_1 = 42.4\% \]

Counts partial interviews as respondents

\[RR_2 = 50.7\% \]

http://www.aapor.org/pdfs/standarddefs_4.pdf
84 Countries Represented
Survey Respondents

- Other: 33.5% (634 responses)
- Project manager: 17.9% (340 responses)
- Engineer: 13.2% (250 responses)
- Executive manager: 12.0% (227 responses)
- Program manager: 11.2% (225 responses)
- Analyst: 5.9% (152 responses)
- Programmer: 5.2% (67 responses)

1895 Responses
Approximate Population Proportions

- DoD & Government: 27.4%
- Commercial: 72.6%
Agenda

- Results
 - Response rates and outcome
 - Were subpopulations different?
 - Population demographics
 - Attitudes and beliefs about measurement use

 How are you involved with measurement?
 Are purposes for measurement understood?
 Does measurement help?
 Is measurement used to understand product/service quality?
 Documented measurement processes?
 Measurement definitions understood and consistent?
 Do measurable criteria exist for products and services?
 Is corrective action taken when thresholds are exceeded?

- Measures that are reported
Involvement With Measurement

- Provider: 15.3% (290 responses)
- User: 17.1% (324 responses)
- Both a provider and a user: 60.3% (1142 responses)
- Other: 7.1% (136 responses)

Common responses:
- Don’t do measurement.
- I set up measurement programs.

1892 Responses
Provides (only) or Uses (only)

- Uses measurement data but does not provide it to someone else.
- Provides measurement data but does not use it.

289 Provider
321 User
Purpose for Measuring Is Understood

- Frequently: 1286 responses (69.6%)
- Occasionally: 390 responses (21.1%)
- Rarely: 69 responses (3.7%)
- Never: 18 responses (1.0%)
- I don't know: 14 responses (0.8%)
- N/A: 70 responses (3.8%)

1847 Responses
Believe That Measurement Helps (To Some Degree)

- Agree: 92%
- Disagree: 2%
- N/A: 2%
- Not sure: 4%

1868 Responses
Measurement Used to Understand Quality of Products & Services

- Frequently: 825 responses, 44.5%
- Occasionally: 723 responses, 39%
- Rarely: 210 responses, 11.3%
- Never: 39 responses, 2.1%
- I don’t know: 17 responses, 0.9%
- N/A: 38 responses, 2.1%

Total responses: 1852
Documented Process for Collecting Measurement Data

- Frequently: 876 responses (47.3%)
- Occasionally: 559 responses (30.2%)
- Rarely: 269 responses (14.5%)
- Never: 87 responses (4.7%)
- I don’t know: 18 responses (1.0%)
- N/A: 43 responses (2.3%)

1852 Responses
Measurement Definitions Are Understood & Consistent

- Agree: 70%
- Disagree: 24%
- N/A: 2%
- Not sure: 4%

1868 Responses
Measurable Criteria Exist for Products & Services

- Frequently: 799 responses (43.1%)
- Occasionally: 711 responses (38.4%)
- Rarely: 233 responses (12.6%)
- Never: 31 responses (1.7%)
- I don’t know: 30 responses (1.6%)
- N/A: 48 responses (2.6%)

1852 responses in total.
Corrective Action Taken When Measurement Threshold Exceeded

- Frequently: 745 responses (40.3%)
- Occasionally: 644 responses (34.9%)
- Rarely: 259 responses (14.0%)
- Never: 86 responses (4.7%)
- I don’t know: 52 responses (2.8%)
- N/A: 61 responses (3.3%)

Total responses: 1847
Action-Oriented Response to Measurement Information

- Measurable criteria established (frequently)
- Corrective action taken when threshold met (frequently)
Agenda

Introduction
- Survey objectives & approach
- The population being studied
- Sampling plan

Results
- Response rates and outcome
- Population demographics
- Attitudes and beliefs about measurement use
- Measurement guidance that is used
- Measures that are reported

Summary Observations
Measurement Methods Used

The percentages do not add to 100% because some individuals use more than one method.
“Other” Methods Used

- Home-Grown: 39
- No Metrics (comment): 32
- Proprietary: 25
- Other: 25
- Customized from Other: 20
- CMM: 19
- Standards (IEEE, ISO, etc.): 17
- Six-Sigma: 15
- ITIL: 7
- Balanced Scorecard: 7
- By Mandate: 5
- SPC: 5
- Function Points: 3

219 Responses
Those Using “CMMI M&A Process Area”
Agenda

Introduction
- Survey objectives & approach
- The population being studied
- Sampling plan

Results
- Response rates and outcome
- Population demographics
- Attitudes and beliefs about measurement use
- Measurement guidance that is used
 - Measures that are reported

Summary Observations
Measurements that Are Reported

- Risks identified: 156 (90.4%)
- Schedule progress: 50 (97.0%)
- Code growth: 490 (62.7%)
- Defects removed: 217 (86.0%)
- Defects identified: 158 (90.0%)
- Effort applied to tasks: 115 (93.0%)
- Capability/requirements stability: 401 (73.6%)

Frequency

1796 Responses
Agenda

Introduction
- Survey objectives & approach
- The population being studied
- Sampling plan

Results
- Response rates and outcome
- Population demographics
- Attitudes and beliefs about measurement use
- Measures that are reported

→ Summary Observations
In general, there were significant differences in response patterns when comparing management versus staff.

<table>
<thead>
<tr>
<th>Management</th>
<th>Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive</td>
<td>Engineer</td>
</tr>
<tr>
<td>Program Manager</td>
<td>Analyst</td>
</tr>
<tr>
<td>Project Manager</td>
<td>Programmer</td>
</tr>
</tbody>
</table>

Statistical tests of significance demonstrated that the differences were significant with confidence of at least 99% in all cases (and 99.9% in some cases).

- Hypothesis test for equality of proportions
- Chi-Square test for significance
Influence of Role on Response - 2

When compared to staff, management responded more strongly that

- they understand the purposes for measurement
- measurement helps their team perform better than without it
- they use measurement more often to understand the quality of their products and services
- they follow a documented process more often for collecting and reporting measurement data
- measurement definitions are commonly understood and consistent in their organization
- measurable criteria exist for their products and services
- corrective action is taken when a measurement-based threshold has been exceed

In general, the differences are statistically significant.
Influence of Organizational Size - 1

<table>
<thead>
<tr>
<th>Number in Organization</th>
<th>(\leq 100)</th>
<th>101 - 499</th>
<th>(\geq 500)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using measurement-based data helps my team to perform better than without using it.</td>
<td>78.4%</td>
<td>81.5%</td>
<td>86.8%</td>
</tr>
<tr>
<td>There exist measurable criteria for the products and services to which I contribute.</td>
<td>37.0</td>
<td>46.4</td>
<td>54.7%</td>
</tr>
<tr>
<td>I use measurement to understand the quality of the products/services that I work on.</td>
<td>35.1%</td>
<td>41.1%</td>
<td>46.2%</td>
</tr>
<tr>
<td>My team follows a documented process for collecting measurement data.</td>
<td>65.7%</td>
<td>71.6%</td>
<td>72.1%</td>
</tr>
</tbody>
</table>

* Percent that Agree or Strongly Agree.

* Percent that responded, “Frequently” to the listed questionnaire item.
Comparing Industry to Government

<table>
<thead>
<tr>
<th>Statement</th>
<th>Industry</th>
<th>Government</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using measurement-based data helps my team to perform better than without using it.</td>
<td>84.5%</td>
<td>80.0%</td>
</tr>
<tr>
<td>Definitions of measures used in my organization are commonly understood & consistent.</td>
<td>37.1%</td>
<td>31.9%</td>
</tr>
</tbody>
</table>

* Percent that Agree or Strongly Agree.

Differences statistically significant with confidence 95%.
Comparing USA to Other Countries

<table>
<thead>
<tr>
<th>Statement</th>
<th>USA</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using measurement-based data helps my team to perform better than without using it.</td>
<td>80.1%</td>
<td>85.9%</td>
</tr>
<tr>
<td>Definitions of measures used in my organization are commonly understood & consistent.</td>
<td>31.3%</td>
<td>42.4%</td>
</tr>
</tbody>
</table>

* Percent that Agree or Strongly Agree.

Differences statistically significant with confidence 99%.
Using Measurement to Improve

It is notable and a bit alarming that only 40.3% of all respondents reported that corrective action is taken when a measurement threshold has been exceeded.

Close to 20% of respondents reported that corrective action is rarely or never taken when a measurement threshold is exceeded.

Measurement doesn’t help much unless the information is acted upon.
To be published this year:

The State of Software Measurement Practice: Results of 2006 Survey
TECHNICAL REPORT
CMU/SEI-2006-TR-009
ESC-TR-2006-009
Acknowledgements

Thanks to my SEMA colleagues who contributed their ideas for this survey. This work benefited from their good review and feedback.

Robert Ferguson Dennis Goldenson Dave Zubrow
Wolf Goethert Jim McCurley Michael Zuccher
Laura Malone Robert Stoddard

Also, Linda Parker Gates and Erin Harper provided helpful feedback. I thank them for their contributions. Special thanks to Peter Capell for detailed review and helpful feedback he provided on multiple work products associated with this effort.

Thank you to Connie Sapienza, Jim McCurley, and Mike Zuccher for their assistance with organizing the database information used in this effort.

Thanks to Laura Malone and Michael Zuccher for their extra effort required to implement the survey incentive offer associated with the Software Engineering Information Repository (SEIR).

Thanks to Dave Zubrow for management support of this effort.

Finally, thank you to the individuals that took the time to assist us with this research by responding to this survey.