Systematically Tailoring the Organization’s Standard Process for a Project

Date: November 16, 2006
CMMI Technology Conference and User Group
Presented By: Dr. Kenneth E. Nidiffer
nidiffer@systemsandsoftware.org
(703) 742-7110
Agenda

• Exponential Growth in Software
 – Expansion in Software Process Assets
• Current State of Practice
 – Large Organizational Standard Processes (OSPs)
 – Manual Tailoring of OSPs to Project
 Define Processes
• Problems with Manual Tailoring
• Automated Rules-Based Tailoring
• Lessons Learn, Contributions & Road Ahead

“Perfect Storm” Event, October 1991
National Oceanic & Atmospheric Administration
Exponential Growth in Software Usage & Assets

* Provided by Lockheed Martin

In The Beginning

1960’s

F-4A
1000 LOC

1970’s

F-15A
50,000 LOC

1980’s

F-16C
300K LOC

1990’s

F-22
1.7M LOC

2000+

F-35
>6M LOC

* Provided by Lockheed Martin
Market Dynamics: Drivers That Increase the Demand on Additional Systems & Software Assets

The emerging dynamic is to address both sides, and do so with compressed delivery schedules via improvements in systems engineering.
Example: Shift to Service Delivery versus Produce and Delivery Perspective

What size problem can a given number of people attack, using different sizes of organizational assets?

- Many people (using a light set of assets)
- Few people
- Many people (using a heavier set of assets)
- Many people (using a very heavy set of assets)

Size of Organizational Assets

*Slide adapted from Alistair Cockburn, Presentation at SSCI, 3/29/06
Tailoring the Corporate OSPs to Lighter Project Defined Processes

Training material registered in the U.S. Patent & Trademark Office by Carnegie Mellon University.
Tailoring Example: Software & Systems Engineering Processes & Practices

Common Source Processes & Practices
- ANSI/EIA-632
- ISO 9001:2000
- CMMI V1.1 & V1.2
- ISO/IEC-12207
- Mil Std 499C
- ISO/IEC-15288
- IEEE 1220

Industry Std
- Gov’t Std

Process Standards
- Domain Specific Standards

Organizational Standard Process(es)

Project Defined Process

Manual Tailoring

Corporate Standards & Other Command Media

Business Units

Focus
In Theory, These Steps Should Work:

1. Classify program using characteristics
2. Select analogous programs based with similar characteristics
3. Identify processes with no coverage
4. Find sources for uncovered processes (OSPs or other)
5. Select sources for process tailoring
6. Tailor processes to unique program needs
7. Assemble program defined process

The difference in “Theory” and “Practice” is that in theory they are the same however in practice they often are not
Acknowledged Problems with Manually Tailoring

• Low perceive value by program managers
• Insufficient knowledge and implementation of tailoring rules
• Too much data
 – Organization Standard Process consists of hundreds of process elements; thus, difficult to determine which ones are applicable to their project
• Insufficient planning time available
• Lack of qualified resources
 – Organizations who are lucky enough to have professional members of their technical staff who can manually perform the needed tailoring are often not available
Potential Solution: Automated Rules-Based Tailoring Engine

What is the feasibility to using an intelligent agent (e.g. Tailoring Engine) to inform and direct the selection and tailoring of the OSP based on a set of business rules?
Proof of Concept Approach

- Research the field (please see references)
 - Identified key issues and risks
- Selected a “Proof of Concept” approach
- Develop an engagement plan
 - Defined the problem statement among key stakeholders
- Defined the type of OSP we wanted to tailor based on automated process tailoring needs
- Selected a publicly available, accepted and reasonably complete functional process guide as a mock OSP
- Defined the type of tailoring tool we needed based on our tailoring requirements
- Selected the tailoring tool
- Developed a set of tailoring rules for the proof of concept demonstration
- Collected contributions and lessons learned
The Formulation of Effective Tailoring Rules Challenging Due to Project Asset Attributes

Common Source Standards

• Project Characteristics
 – Are requirements well known? (Yes: Waterfall, O&M or Incremental life cycles; No: Prototyping, Incremental, or Evolutionary life cycles)
 – Security Requirements?
 – System Size (S, M, L)
 – Level of Risk

• Project Characteristics (cont’d)
 – How complex is the system? (#COTS, #Shalls, #Interfaces, #Users, SOS, #HWCIs, #SWCIs, DP rqts)
 – System Composition (HW, SW, both)
 – Product Intent (Feasibility Study, R&D, Operational Program)
 – Contract Type (FFP, T&M, CPFF, Award Fee)
 – Scope (Formality, Control, Structure)

OSP Example: Systems Engineering Standards
Interdependence of Engineering Sub-processes: Naval Systems Engineering Guide and EIA 632

Sub-process 14
Initial Specification From Acquirer
Trace To
- Acquirer Requirements

Sub-process 15
Other Requirements from Internal and External Sources
Trace To
- Other Stakeholder Requirements

Requirements Definition Process

Sub-process 16
- DRIVE
 - System Technical Requirements
 - ASSIGNED TO

Sub-process 17
- DRIVE
 - Logical Solution Representations
 - ASSIGNED TO

Sub-process 18
- Derived Technical Requirements
 - DRIVE
 - Physical Solution Representations
 - ASSIGNED TO

Sub-process 19
- SOURCE OF
 - Design Solution
 - SPECIFIED BY
 - Specified Requirements

*Those requirements not assigned to Logical Solution Representations

Solutions Definition Process

Requirements Management & System Architecture database

Naval Systems Engineering Guide and EIA 632
Deceptive Similarity of Industry Standards

• Because the source standards cover roughly the same ground, we anticipated that “normalizing” them would be relatively straightforward

• We expected to find (and did!) differences in:
 – Scope, terminology and level of detail

• Subtler differences emerged in the source standards’ codification of:
 – Product life cycle
 – Development life cycle model
 – Recursive application of process throughout a system hierarchy

• Industry standards do not cover all the necessary processes (e.g. finance, legal, ethics, etc)
“Inter-connectiveness” of Process Steps

<table>
<thead>
<tr>
<th>Navy SE Sub-Process</th>
<th>Preceding Process</th>
<th>Next Process</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquirer Requirements (SP14)</td>
<td>SP 22 Systems Analysis Process, SP26 Requirements Validation Process</td>
<td>SP 2 Acquisition Process, SP4/5/7 Planning Process, SP 10/11 Assessment Process, SP 12 Control Process, SP 16 Requirements Definition Process, SP22 Systems Analysis Process, SP 26 Requirements Validation Process, SP 31 System Verification Process, SP 33 End Products Validation Process</td>
<td>ICD, CDD/ORD, Engineering Investigation Reports, Utilization & Readiness Reports, Specifications from higher level system building blocks, Sponsor high level operational concept graphic architecture (EXT), Effectiveness analysis reports (SP 22), Effectiveness models (SP 22), Acquirers Requirements Validation Revisions (SP 26)</td>
<td>ICD(SP 2/4/7/10/11/16/3 1/33), Effectiveness Analysis Request (SP 22), Measurement of Effectiveness (SP 5/7/16), CDD or CPD(SP 2/4/7/10/11/16/3 1/33), Specifications from higher level system building blocks (SP 16), Acquirers Requirements(SP 5/16/26)</td>
</tr>
</tbody>
</table>
Decomposition - Small Changes in a System Engineering Standard Drive Many Other Changes

Life Cycle Phase Definition

Product Design

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Entry Criteria</th>
<th>Activities</th>
<th>Exit Criteria</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>Entry Criteria</td>
<td>Determine Technical Solution</td>
<td>Exit Criteria</td>
<td>Outputs</td>
</tr>
<tr>
<td>High-level Design</td>
<td>Entry Criteria</td>
<td>Detailed Design</td>
<td>Exit Criteria</td>
<td>Outputs</td>
</tr>
<tr>
<td>Detailed Design</td>
<td>Entry Criteria</td>
<td>Design</td>
<td>Exit Criteria</td>
<td>Outputs</td>
</tr>
</tbody>
</table>

Design Specification

Forms

Procedures
Tailoring Effort Increases Non-Linearly with Program and Technology Complexity

Program/Project Management Scope

3. Array
Program or Set of projects

2. System
Project with complex set of interactive elements

1. Assembly
Project consisting of single unit

Increasing:
- Size
- Scope Control
- Planning
- Subcontracting
- Documentation
- Bureaucracy

Increasing:
- Multi-Systems Planning
- Systems Engineering
- Systems Integration
- Configuration Management
- Design Cycles
- Risk Analysis & Management

Increasing:
- Technical Skills
- Flexibility
- Development & Testing
- Late Design Freeze
- Technical Communication
- Risk & Opportunity

Tailoring effort increases non-linearly

Low

Technological Uncertainty

High

Established
(Classic Tech)

Mostly Established
(Medium Tech)

Advanced
(Hi-Tech)

Highly Advanced Or Exploratory
(Super Hi-Tech)

Source: Shenhar and Wideman
What We Determined: Devil in the Details

- State of Practice
 - Some on-going research in the area of automated rules-based test engines
 - Existence of a limited set of reasonably mature automated tailoring tools
 - Significant manual-tuning required dealing with most problems
 - Limited number of “universal” tailoring rules
 - Output often compatible with Microsoft tools
 - WBS and Project Plans automatically generated
 - OSPs nominally contain a substantial body of knowledge and data
 - Many different formats and types of artifacts
What We Determined: Devil in the Details

- Technically
 - In general, standard processes are not engineered/architected for tailoring
 - Makes automation difficult
 - Organizational assets are expanding, costly to maintain, and are becoming more difficult to tailor to projects
 - Difficult for an OSP to cover every case and be lean
 - Tailoring rules difficult to establish
 - Numerous attributes drive the process tailoring decisions
 - Strong demand for the establishment of robust tailoring rules
What We Determined: Devil in the Details

• Technically (Con’t)
 – Multiple frameworks (e.g. CMMI, ISO, ITIL, etc) are not scalable or easily customizable
 • Different frameworks need different data elements

• Organizationally
 – Corporate committed, projects involved

• Human element
 – Natural tendency to tailor the OSP based on least resistance
 • Information from similar programs
 • Reliance on local process improvement teams
 – Difficult to demonstrate to program managers the ROI
 – Lack of consistency in process definition for most process areas
Road Ahead

• The problem is real
 – The problem is not going away and will grow in importance with time

• In the short run, tailoring responsibility will nominally rest with the process engineering teams
 – Key focus will be the development of tailoring rules and guidelines
 – Rules-based engine research will continue

• In the longer term:
 – Organizations will use process architectures to design and populate their process asset libraries
 – Intelligent agents/rules-based test engines will become more prevalent
Road Ahead

• Utopia Perspective
 – What could we do differently if we started over?

• Secret of success may be a shift of focus from assets to process execution information

• Approach
 – Define a common set of software and system engineering processes for the organization
 – Map the common set of processes to the organizations lifecycles
 – Apply processes/lifecycles on programs and collect data
 – Store process execution information in the PAL
 – Improve processes based on results and establish tailoring rules
Road Ahead: Example - Service-Oriented Architecture & Asset Management

- Service-Oriented Architecture is an approach to building IT systems out of common parts
 - Represents a breakthrough in the way we build IT systems
 - Composed of reusable components, called services
 - Service is a building block that performs a distinct function
 - Evolution of client/server architecture
 - Functions of user I/F, application logic and data management are separated and decomposed still further

- Why Now
 - Internet and World Wide Web
 - Business/Quality Focused
 - Standardization (common parts)
 - Vender Market
Questions?
References

• Dybå, T., "Improvisation in Small Software Organizations." IEEE Software, 17 (5), 2000, pp. 82-87

• Cockburn, A, Presentation at SSCI, March 2006
References

- Fischer, G., Ostwald, J., "Knowledge Management: Problems, Promises, Realities, and Challenges." *IEEE Intelligent Systems*, 16 (1), 2001, pp. 60-72
- Henninger, Scott, “Turning Development Standards Into Repositories of Experiences, Department of Computer Science and Engineering, University of Nebraska, NE
- Henninger, Scott, “Tools Supporting the Creation and Evolution of Software Development Knowledge, Department of Computer Science and Engineering, University of Nebraska, NE
- ANSI/EIA Standard 632, Processes for Engineering a System, January 1999
References

• EIA Standard 731.1, Systems Engineering Capability Model, August 2002
• IEEE 1220 Standard, IEEE Standard for Application and Management of the Systems Engineering Process
• Naval Systems Engineering Systems Guide, October 2004
Recommended Reading

See http://ccs.mit.edu/futureofwork/