Integrating Planning, Control, Measurement & Analysis CMMI™
Process Areas To Achieve More Successful Software Projects

Daniel D. Galorath
galorath@galorath.com
310 414-3222 x614
Integrating Planning, Control, Measurement & Analysis CMMI™ Process Areas
To Achieve More Successful Software Projects

Project Planning and Project Monitoring and Control, two CMMI® Level 2 Process Areas, are essential to Software Project Management. Prior to project initiation, the relationship between these two process areas tends to be strong. Unfortunately, the status quo tends to exhibit a breakdown in this relationship once the project has begun. The result is an open-loop situation: we know where we planned to be and where we are; however, we don’t know where and when we will likely end up.

This paper first reviews the fundamentals of Parametric Estimating and Performance Measurement and then proposes an integrated process uniting Project Planning, Project Monitoring and Control, and Measurement and Analysis. The benefits of this integration are an increased probability that: 1) a project’s plan is achievable (i.e., it honors the laws of software project dynamics and keeps from “death marches”); and 2) actual performance matches reasonably-expected (planned) performance; (i.e., that a project is delivered on time and within budget); and 3) if there are troubles that there is an early warning of trouble and possibilities for managers to remediate. Finally, the paper chronicles, through the use of selected artifacts, an actual project employing this integrated approach.
CMMI Key Process Areas Require Estimation With Feedback

Project Planning
- Establish Estimates
- Develop a Project Plan
- Obtain Commitment to the Plan

Estimate & Plan

Measure & Analyze

Monitor & Control

Knowledge & Experience

Baseline

Baseline(s) & Final Actuals

To-date Actuals

Foundation of Risk Management &
Quantitative Project Management

Measurement and Analysis
- Align Measurement and Analysis Activities
- Provide Measurement Results

Project Monitoring and Control
- Monitor Project Against Plan
- Manage Corrective Action to Closure
Poor Estimates Effects on Projects

- Inaccurate estimates can have significant impact on project success:
 - Poor implementations
 - Critical processes don’t scale
 - Emergency staffing
 - Cost overruns caused by underestimating project needs

- Lack of well defined objectives, requirements, & specifications, results in creeping scope resulting in:
 - Forever changing project goals
 - Frustration
 - Customer dissatisfaction
 - Cost overruns and missed schedules
 - Project Failures

- Incorrect estimates / bad plans are a root cause of subsequent program risk
 - Estimating & Planning are key to software project success
We Can’t Afford Not To Spend Time and Money On Viable Estimates and Project Plans
Adapted From Aspire S. Hunt

- **Apollo**
 - Most Apollo program faults were software related

- **Loss of NASA Spacecraft**
 - FORTRAN statement error caused loss of 1st NASA probe to Venus

- **After success with Ariane 4, the maiden flight of Ariane 5 ended in destruction when design defects in the control software were revealed by the faster horizontal drifting speed of the new rocket.**

- **Financial & Program Impacts**
 - Airbus A310 45,000 hours expended against software development (20,000 hours budgeted!)
 - American Airlines lost nearly $1 billion due to software faults
 - In 1991 after 3 lines of code (in millions of lines of code in a signaling program) were changed, telephone systems in California and the Eastern Seaboard went off line

- **Loss of Life**
 - Gulf War 1 Patriot Missile tracking failure due to 0.36 second software driven clock.
 - And so on …….
An Estimate Defined

- An estimate is the most knowledgeable statement you can make at a particular point in time regarding:
 - Effort / Cost
 - Schedule
 - Staffing
 - Risk
 - Reliability

- Estimates more precise with progress

- A WELL FORMED ESTIMATE IS A DISTRIBUTION
Software Development Core Metrics

Effective Technology
Technology

People

Process

Effort (person-months)

Staff & Constraints

Defects (count)

Size (work units)

Stakeholder Requirements

Software Development Process

Delivered Software

Start

Calendar Time

On-going Effort
Progress Defects Growth

Finish

Size (work units)
SEER-SEM Provides Staffing Plans that Avoid “Death Marches” and Failed Projects Applying “Brooks Law”
1. Establish estimate scope
2. Establish technical baseline, groundrules & assumptions
3. Collect data
4. Size software
5. Prepare baseline estimates
6. Quantify risks & risk analysis
7. Review, verify, validate estimate
8. Generate a project plan
9. Document estimate & lessons learned
10. Track project throughout development

Supports Software Best Practices
Step One: Establish Estimate Scope and Purpose

- Define and document estimate expectations, scope & Purpose
 - Provides a baseline against which to gauge the effect of future changes
 - Reduces misunderstandings & contradictory assumptions
- Estimate should be considered a living document
 - As projects change, data changes or new information becomes available, it should be documented and factored into the estimate in order to maintain the project’s integrity
Define What’s Included in the Estimate

- Development effort breaks down into…
- What functionality will be developed

- How will it be done?
 - Activities & phases

- Who will do the work?
 - Personnel labor categories
Step Two: Establish Technical Baseline, Groundrules, & Assumptions

- Functionality included in the estimate or range must be established
 - If detailed functionality is not known, groundrules and assumptions state what is and isn’t included in the estimate.
 - Issues of COTS, reuse, and other assumptions should be documented as well.

- Groundrules and assumptions form the foundation of the estimate
 - although early at early stages they are preliminary and therefore rife with uncertainty, they must be credible and documented
 - Review and redefine these assumptions regularly as the estimate moves forward.
Technical Baseline

- **Describe each work element**
 - Core functionality
 - Key qualitative modeling inputs
 - Size, if available

- **Identify multiple builds/releases (if any)**

- **Reference or excerpt available documentation**

- **Provide rationale & justification for BOE**
Ground Rules & Assumptions

- **Groundrule**: given requirement of the estimate (e.g. software must support Windows and Linux)
 - Be sure to provide source

- **Assumption**: assumed to scope estimate
 - Be sure to provide source and substantiation

- **What’s known, what’s unknown**

- **Anything relating to scope**
 - What’s included, what’s excluded

- **Anything relating to modeling inputs**
 - Who you interviewed and when
 - What you learned
Step Three: Collect Data

- **Software Data Collection Process key considerations**
 1. Motivate potential data providers to participate
 2. Avoid nondisclosure agreements containing clauses requiring exclusivity or destruction of data if you can
 3. Provide data collection forms and instructions beforehand, in both hard copy and electronic formats
 4. Provide clear definitions but recognize providers may not read them
 5. Identify which data are required, highly desirable or desirable
 6. During the face-to-face interview confirm data is realistic and valid
 7. Grade to indicate confidence
 8. Normalize data via well-documented process & Keep both the raw and normalized data
Data Collection

- **Begin with available documentation**
 - SDP, TRD, SRS, COO, ORD, CARD, BAFO, BOE, SOW
 - A-level Spec, Program Schedule, Contractor Presentations

- **Perform interviews where & when possible**
 - Development contractor(s)
 - Program office personnel, FFRDC engineers
 - Preparation is paramount!
 - Use a questionnaire, sent in advance
 - Phraseology determines answers
 - Confirm key definitions
 - Be willing to challenge, point out inconsistencies
Step Four: Software Sizing

- **Spend Time on sizing**
 - Include rework that will be required to develop the product,

- **Estimate *least likely* most range.**

- **Some widely used methods of estimating product size are:**
 - Expert opinion
 - Analogy
 - Formalized methodology
 - Statistical sizing — Provides a range of potential sizes that is characterized by *least*, *likely*, and *most*
Steps to Estimating Software Size

- Use a software sizing method that is consistent and repeatable
 - Reestimate as specs change
 - Establish baseline definition of the size metric & identify normalization process if different from the definition chosen

1. Define sizing objectives
 - Are you trying to describe the size of individual computer programs, plan major milestones in the estimation process, or adjust for project replanning? Varying granularities of sizing detail will be appropriate

2. Plan data and resource requirements of the sizing activity

3. Identify and evaluate software requirements, a set of software specifications that are as unambiguous as possible

4. Use several independent techniques and sources and put findings in a table

5. Track the accuracy of the estimate versus actuals as the project progresses, and reestimate the product size periodically with actual data.
Apply Size Estimation Methodology

Evaluate all sources of software size...

New size
Generated code
Glue code
Pre-existing size (rework)
COTS/GOTS
Integrated code

<table>
<thead>
<tr>
<th>Total Size Estimates</th>
<th>Least</th>
<th>Likely</th>
<th>Most</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert Judgement</td>
<td>12000</td>
<td>15500</td>
<td>17000</td>
</tr>
<tr>
<td>Relevant Range by Analogy</td>
<td>19850</td>
<td>24750</td>
<td>32540</td>
</tr>
<tr>
<td>Sizing Database</td>
<td>8000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Analysis</td>
<td></td>
<td>27540</td>
<td></td>
</tr>
<tr>
<td>SEER-AccuScope</td>
<td>15450</td>
<td>22650</td>
<td>29850</td>
</tr>
<tr>
<td>Delphi Analysis</td>
<td>16788</td>
<td>19750</td>
<td>22713</td>
</tr>
<tr>
<td>Composite</td>
<td>12000</td>
<td>22650</td>
<td>46000</td>
</tr>
</tbody>
</table>

Multiple size estimates → Viable size range

...Using multiple methods

© Galorath Incorporated 2006
Step Five: Prepare Baseline Estimate

1. Trained, experienced, and skilled people should be assigned to size the software and prepare the estimates.

2. It is critically important that they be given the proper technology and tools.

3. Project manager must define and implement a mature, documented, and repeatable estimation process.
Estimation Approaches

- **Guessing (which is not recommended)**
- **Using existing productivity data exclusively (also not recommended)**
- **Bottom-Up Estimating**
 - Bottom-up (a.k.a. grassroots) estimating, decomposes the software to its lowest levels by function or task and then sums the results
 - Can be effective for smaller systems and where estimates are carefully produced
- **Parametric Software cost models**
 - Provide means for applying a consistent method for subjecting uncertain situations to rigorous mathematical and statistical analysis
 - When used properly they are more comprehensive than other estimating techniques and help to reduce the amount of bias that goes into estimating software projects
- **Delphi Based Estimates**
 - Several expert teams or individuals, each with an equal voice and an understanding up front that there are no correct answers, start with the same description of the task at hand and generate estimates anonymously, repeating the process until consensus is reached
- **Activity-Based Estimates**
 - Begin with requirements & size then define the required tasks, which will serve to identify the overall effort that will be required
 - Typically Major cost drivers focused on non-coding tasks included in effort estimate
 - Build a task hierarchy (WBS) that represents how the work will be organized and performed
 - This work breakdown structure can be the backbone of the project plan
Generate the Estimate

- Using your chosen methodology and tool, do a first run
- Never report preliminary results!
- Focus on the inputs
 - Verify completeness
 - Verify accuracy
- Focus on the outputs
 - Sanity check for reasonableness, completeness
- What’s driving the estimate?
 - SEER-SEM top ten parameters
- Use “fresh eyes” to review
 - Ask a colleague for help
 - Set aside overnight

Top 10 Effort Impacts

1. Specification Level - Reliability
2. Test Level
3. Special Display Requirements
4. Development System Volatility
5. Target System Volatility
6. Quality Assurance Level
7. Process Volatility
8. Dev Sys Exper/Compl
9. Real Time Code
10. Rehost from Development to Target
Update/Refine the Estimate

- Optional or more specific information may become available in the future
- Follow configuration control guidelines to keep estimates straight
 - Change log
 - Naming conventions
 - File storage
- Maintain estimating integrity – eschew artificially driving the estimate to a predetermined result
Step Six: Quantify Risks and Risk Analysis

- Risk can produce loss of time, or quality, money, control, understanding, and so on.
 - Loss associated with a risk is called the risk impact

- Approximate the probability that the event will occur
 - Risk probability: Likelihood the risk, measured from 0 (impossible) to 1 (certainty)
 - When the risk probability is 1, the risk is a problem since it is certain to happen.
 - Determine how risk can be mitigated
 - Risk control involves a set of actions taken to reduce or eliminate a risk.

- Risk management identifies & addresses internal & external potential threats
 - Problems associated with sizing and estimating software potentially can have dramatic negative effects.
 - If problems can be foreseen & causes acted upon in time, effects can be mitigated

- Although cost, schedule, and product performance risks are interrelated, they can also be analyzed independently
 - Risks must be identified as specific instances in order to be manageable
 - Statistical risk/uncertainty analysis should be a part of schedule & effort estimation process
Understanding Risk and Uncertainty is Essential To Project Management
Step Seven: Estimate Validation and Review

- Ideally, validation performed by one who was not involved in generating the estimate
- Assess estimate assumptions
- Ensure groundrules are consistent applied
- Rigorous validation process exposes faulty assumptions, unreliable data and estimator bias
 - Provides clearer understanding of the risks inherent in your projections
 - Having isolated problems at their source, you can take steps to contain the risks associated with them, and you will have a more realistic picture of what your project will actually require to succeed
- Failing to validate the estimate may result in much greater downstream costs, or even a failed project
Compare Parametrics With Metrics and Sanity Checks

- Works with common repository
- Shows actual data, ranges, and correlations
- Plots SEER-SEM estimates and contrasts with data points

"In God we trust, all others bring data."
—W. Edwards Deming
Step Eight: Generate A Project Plan

- includes allocating estimate cost & schedule & allocating the cost and schedule to a function and task-oriented work breakdown structure

- Issues
 - Inexperienced managers may not properly evaluate decisions effects over the long run.
 - lack necessary information
 - believe time to develop the information will make the project suffer
 - Other managers make decisions based on what they think higher management wants to hear
 - Good manager understands project realities even if it is not what higher management wants.
 - Job is to explain the reality in language his managers can understand
 - Problem managers although they may mean well, either lead a project to an unintended conclusion or, worse, drift down the road to disaster.

- Software management and planning problems have been recognized for decades as the leading causes of software project failures
 - bad management decisions
 - Incorrect focus
 - destructive politics
Memorandum of 13 June 2004 from Undersecretary of the Air Force: “Revitalizing the Software Aspects of Systems Engineering”

Number 1 (of 10) recommendation: High Confidence Estimates
- “Estimate the software development and integration effort (staff hours), cost and schedule at high (80-90%) confidence.”

Number 2 recommendation: Realistic Program Baselines
- “Ensure cost, schedule and performance baselines are realistic and compatible. … The program budget must support the high confidence estimates for effort (staff hours), cost, and schedule.”

Number 3 recommendation: Risk Management
- “Continuously identify and manage risks specific to computer systems and software as an integral part of the program risk management process. Ensure the risks, impact, and mitigation plans are appropriately addressed during program and portfolio reviews.”
Expand Product WBS to Task level Plan

Transforms Microsoft Project into a powerful tool for planning software development projects.

- Automatically constructs a complete project plan
 - with relatively few inputs
 - or directly from your SEER-SEM project estimate.
- You can create custom life cycle templates.
- You can customize labor categories to reflect the way that your organization assigns tasks to departments or labor categories to accurately plan staff allocation for a project.
Step Nine: Document Estimate and Lessons Learned

- Document upon estimate complete AND project complete
 - document the pertinent information
 - record the lessons you learned. By doing so, you will have evidence that your process was valid and that you generated the estimate in good faith, and you will have actual results with which to substantiate or calibrate your estimation models.

- Be sure to document any missing or incomplete information and the risks, issues, and problems that the process addressed and any complications that arose

- Document key decisions made during the estimate & results

- Document dynamics that occurred during the process e.g.
 - interactions of your estimation team
 - interfaces with clients
 - trade-offs made to address issues identified during the process.

- Conduct a lessons-learned session as soon as possible after the completion of a project while the participants’ memories are still fresh.

- Every software project should be used as an opportunity to improve the estimating process
Step Ten: Track Project Throughout Development

- Refining Estimates throughout Project
- Once a project has started, use estimates as a basis for performance measurement & project control
- Monitor actual effort & duration of tasks and/or phases against planned values to ensure you have the project under control
- Applying earned value techniques along with parametric estimation can help ensure successful projects
- Evaluate defects & growth in addition to simple earned value
Many think of earned value as a high level program control metric

But Earned value analysis is most valuable when the units of work are small (1-2 week activities)

Use binary earned value…
- Either not done (earned 0 value) or
- Complete (earned full value) for the task

Galorath has used earned value at the root level as a core technique for saving failing software projects
The main concern of EVM is what has been accomplished in a given time and budget, versus what was planned for the same time and budget:

- A project is generally deemed healthy if what has been accomplished is what was planned, or more.
- A project is deemed unhealthy if accomplishment lags expectations.

Definition: Earned value = budgeted value for the work accomplished (what you got for what it cost you).

Healthy

- \[EV = \text{budgeted value for the work accomplished} \]
- \[\text{Time} = \text{Now} \]

Unhealthy

- \[EV = \text{budgeted value for the work accomplished} \]
- \[\text{Time} = \text{Now} \]
CMMI Process Areas For Planning, Monitoring & Control
CMMI Key Process Areas Require Estimation With Feedback

Project Planning
- Establish Estimates
- Develop a Project Plan
- Obtain Commitment to the Plan

Estimate & Plan

Measure & Analyze

Monitor & Control

Knowledge & Experience

To-date Actuals

Baseline(s) & Final Actuals

Project Monitoring and Control
- Monitor Project Against Plan
- Manage Corrective Action to Closure

Measurement and Analysis
- Align Measurement and Analysis Activities
- Provide Measurement Results

✓ Foundation of Risk Management &
✓ Quantitative Project Management
The CMMI Process Areas

Source: CMMI Tutorial

Process Area

<table>
<thead>
<tr>
<th>Category</th>
<th>Process Area</th>
</tr>
</thead>
</table>
| **Project Management** | 1. Project Planning
 2. Project Monitoring and Control
 Supplier Agreement Management
 Integrated Project Management (IPPD)
 Integrated Supplier Management (SS)
 Integrated Teaming (IPPD)
 3. Risk Management
 4. Quantitative Project Management |
| **Support** | Configuration Management
 Process and Product Quality Assurance
 5. Measurement and Analysis
 Causal Analysis and Resolution
 Decision Analysis and Resolution
 Organizational Environment for Integration (IPPD) |
| **Engineering** | Requirements Management
 Requirements Development
 Technical Solution
 Product Integration
 Verification
 Validation |
| **Process Management** | Organizational Process Focus
 Organizational Process Definition
 Organizational Training
 Organizational Process Performance
 Organizational Innovation and Deployment |

We will concentrate on:
1. Project Planning
2. Project Monitoring & Control
3. Measurement & Analysis
4. Risk Management
5. Quantitative Project Mgmt
SEER-PPMC Parametrics Combined With Traditional EVM Captures Software Project Trouble More Completely

SEER-PPMC: Performance Mode
Significant Overrun Apparent

<table>
<thead>
<tr>
<th>Data Value</th>
<th>Baseline Estimate</th>
<th>17.97</th>
<th>12%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Schedule Months</td>
<td></td>
<td>108.57</td>
<td>25%</td>
</tr>
<tr>
<td>Development Effort Months</td>
<td></td>
<td>16,502</td>
<td>25%</td>
</tr>
<tr>
<td>Development Effort Hours</td>
<td></td>
<td>1,595,906</td>
<td>25%</td>
</tr>
<tr>
<td>Development Base Year Cost</td>
<td></td>
<td>6/1/04</td>
<td></td>
</tr>
<tr>
<td>Start Date</td>
<td></td>
<td>7/31/05</td>
<td></td>
</tr>
<tr>
<td>Completion Date</td>
<td></td>
<td>2/02/04</td>
<td></td>
</tr>
<tr>
<td>Effective Lines Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Functions Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Size</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE INDICES
- Cost Performance Index (CPI): 0.80
- Schedule Performance Index (SPI): 0.81
- Composite Performance Index (CPI): 0.81
- Time Performance Index (TPI): 0.90

VARIANCE
- Cost Variance (CV) (Hours): -1,038
- Schedule Variance (SV) (Hours): -668
- Time Variance (TV) (Months): -0.97

ACOMPLISHMENTS
- Hours thru Latest Snapshot: 5,200
- Cost thru Latest Snapshot: 502,895
- Earned Value thru Latest Snapshot: 4,162
- Earned Value % thru Latest Snapshot: 31.52%
- Planned Hours thru Latest Snapshot: 5,113
- Projected Productivity Lines/PM: 61.97
- Projected Productivity Functions/PM: 0.79

SEER-PPMC: Basic (EVM) Mode
Overrun Not as Apparent

<table>
<thead>
<tr>
<th>Data Value</th>
<th>Baseline Estimate</th>
<th>16.77</th>
<th>4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Schedule Months</td>
<td></td>
<td>93.73</td>
<td>8%</td>
</tr>
<tr>
<td>Development Effort Months</td>
<td></td>
<td>14,247</td>
<td>8%</td>
</tr>
<tr>
<td>Development Effort Hours</td>
<td></td>
<td>1,377,824</td>
<td>8%</td>
</tr>
<tr>
<td>Start Date</td>
<td></td>
<td>6/1/04</td>
<td></td>
</tr>
<tr>
<td>Completion Date</td>
<td></td>
<td>2/02/04</td>
<td></td>
</tr>
<tr>
<td>Effective Lines Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Functions Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Size</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE INDICES
- Cost Performance Index (CPI): 0.80
- Schedule Performance Index (SPI): 0.81
- Composite Performance Index (CPI): 0.81
- Time Performance Index (TPI): 0.90

VARIANCE
- Cost Variance (CV) (Hours): -1,038
- Schedule Variance (SV) (Hours): -968
- Time Variance (TV) (Months): -0.97

ACOMPLISHMENTS
- Hours thru Latest Snapshot: 5,200
- Cost thru Latest Snapshot: 502,895
- Earned Value thru Latest Snapshot: 4,162
- Earned Value % thru Latest Snapshot: 31.51%
- Planned Hours thru Latest Snapshot: 5,113
- Projected Productivity Lines/PM: 61.97
- Projected Productivity Functions/PM: 0.79

© Galorath Incorporated 2006
CMMI Project Planning Requires Schedule & Effort Estimation & Planning – Context Source CMMI Tutorial

Planning Data

Develop a Project Plan

- Establish the Budget and Schedule
- Identify Project Risks
- Plan for Data Management
- Plan for Project Resources
- Plan Stakeholder Involvement
- Establish the Project Plan
- Plan for Needed Knowledge and Skills

Project Plans
CMMI Estimation Requires Effort, Schedule, Scope – Context Source CMMI Tutorial

Establish Estimates

- Estimate the Scope of the Project
- Establish Estimates of Work Product and Task Attributes
- Determine Estimates of Effort and Cost
- Define Project Life Cycle

Planning Data
CMMI Project Monitoring & Control – Context

Monitor Project Against Plans

- Monitor Project Planning Parameters
- Monitor Project Risks
- Monitor Stakeholder Involvement
- Conduct Milestone Reviews
- Monitor Commitments
- Monitor Data Management
- Conduct Progress Reviews

Manage Corrective Actions to Closure

- Analyze Issues
- Take Corrective Actions
- Manage Corrective Actions

Project Plans

Project Planning (PP)
The First Step To EVM Is A Workable Plan for Cost & Schedule

“...Using EVM properly puts a considerable burden on team members to plan and schedule projects -- skills often in short supply at federal agencies”

... Norman Enger, OMB
http://www.fcw.com/article91403-11-14-05-Print
CMMI Measurement & Analysis –
Context: Source CMMI Tutorial

Align Measurement Analysis Activities

- Establish Measurement Objectives
- Specify Measures
- Specify Data Collection and Storage Procedures
- Specify Analysis Procedures

Measurement Objectives

Measurement Personnel

Measurement Indicators

Provide Measurement Results

- Communicate Results
- Store Data & Results
- Analyze Measurement Data
- Collect Measurement Data

Procedures, Tools

Measurement Repository
Purpose:

- Identify potential problems before they occur, so that risk handling activities may be planned and invoked as needed across the life of the product or project to mitigate adverse impacts on achieving objectives.

SEER Provides the cost & schedule impacts of such risk

According to Mike Evans “We can tell them they have a problem. SEER can quantify what the impact is”
CMMI Key Process Areas Require Estimation With Feedback

Project Planning
- Establish Estimates
- Develop a Project Plan
- Obtain Commitment to the Plan

Estimate & Plan

Measure & Analyze

Monitor & Control

Knowledge & Experience

Baseline(s) & Final Actuals

To-date Actuals

Project Monitoring and Control
- Monitor Project Against Plan
- Manage Corrective Action to Closure

Measurement and Analysis
- Align Measurement and Analysis Activities
- Provide Measurement Results

- Foundation of Risk Management &
- Quantitative Project Management
“Earned Value Analysis” is an industry standard way to:
1. measure a project’s progress
2. forecast its completion date and final cost
3. provide schedule and budget variances along the way.

Provides consistent, numerical indicators with which you can evaluate and compare projects

Earned value (Performance Measurement) techniques are just as viable using effort for root level project management

- Effort Value – units of labor; e.g.:
 - person-hours, staff-hours, effort-hours, labor-hours
 - person-months, staff-months, effort-months, labor-months
Baseline Budget – Budget at Completion (BAC)

Planned Value – Budgeted Cost of Work Scheduled (BCWS aka PV)
- Planned Value: Budgeted cost for work scheduled to be completed up to a given point in time.

Earned Value – Budgeted Cost of Work Performed (BCWP aka EV)
- Progress: Budgeted value for work actually completed during a given time period.

Spent – Actual Cost of the Work Performed (ACWP aka AC)
- Actual cost (AC) - Total cost accomplishing work during a given time period.
Looking at Progress Over Time

See how actual and earned effort measure up to the baseline plan

See CPI, SPI and TPI trends over time

Data Analyzer (Cumulative)
As of 9/16/05 - Design Review

CPI = Cost Performance Index;
The ratio of earned to actual cost of work performed

SPI = Schedule Performance Index;
The percent of the investment that has been completed

TPI = Time Performance Index;
The ratio of elapsed time from start to plan & start to time-now
Defects and Growth Impact Software Process

Heath and Status Indicator shows status and trends from the previous snapshot
Thresholds are user definable

Increased defect reporting rate shows a worsening trend

Track defect discovery and removal rates against expected rates
Parametric Project Monitoring & Control
Provides Performance Measurement aspects of ANSI/EIA-STD-748

- Adds Performance Measurement (Earned Value) methods to SEER-SEM
- Accepts progress & expenditure inputs
- Provides cost, schedule, and time variances
- Provides cost, schedule, & time indices
- Performance-based cost & schedule Estimate at Completion
- Displays health and status indicators
Defects & Size Growth Are Additional Core Metrics

Heath and Status Indicator shows status and trends from the previous snapshot

- Including Size Growth and Defect Discovery/Removal Rate
- User defined control limits to control the transition between red-yellow-green

Track defect discovery and removal rates against expected rates

Increased defect reporting rate shows a worsening trend
“Dollarizing” Risks
Source J. Hamaker

Risk Areas

- Technical / Performance / Engineering
- Schedule
- Cost
- Safety

Estimates are really probability distributions

Sources of uncertainty

- Project uncertainties
- Model variance
- Cost / risk analysis quantifies budget / plan with acceptable confidence levels
Parametric Modeling Supports CMMI

- **Parametric Cost Estimating Methods**
 - Estimating methods based on physical or performance characteristics and schedules of the end items

- **Parametric Estimation Model Definition**
 - Mathematical representation of parametric estimating relationships that provides logical, predictable correlation between the physical or functional characteristics of a system, and the resultant cost, schedule, and other attributes of the system.
 - Comprised of cost estimating relationships (CERs) and other parametric estimating functions, e.g., cost quantity relationships, inflation factors, staff skills, schedules, etc.
 - Provides logical repeatable relationship between input variables and resultant cost
Example Simple Cost Estimating Relationship (CER) Shows Effort Based On Size
Uncertainty and Risk
(Source Q. Redman)

- A Point Estimate is never correct!
- There is always potential variability in inputs.
- But...
 - 26% of program managers do not accept risk assessment at all, not even "slightly".*
 - 44% of risk ranges are intuitive judgments, without historical data or guided-survey.*

*U.S. Aerospace Risk Analysis Survey, Hollis M. black, III, SCEA Estimator October 1999
7 Characteristics of a Dysfunctional Software Project (Source: Mike Evans, et al.)

- Failure to Apply Essential Project Management Practices 57%
- Unwarranted Optimism and Unrealistic Management Expectations 41%
- Failure to Implement Effective Software Processes 30%
- Premature Victory Declarations 20%
- Lack of Program Management Leadership 13%
- Untimely Decision-Making 8%
- Lack of Proactive Risk Management 3%
Estimation Lessons Learned

- The longer the development schedule the higher the risk of key personnel turnover
- EVM shouldn’t be used alone
 - Other metrics are necessary to be kept in concert with the EVM metrics in order to keep a project on track
- Measure early
 - Before trouble
 - Early milestones that are under-budget are not necessarily a good sign
 - Programs that skimp on the early, upfront planning; requirements and design work, will most likely be in trouble later.
- Follow known, proven development processes
- Estimation, planning, tracking, controlling – then using the information to do better next time
- Recognize that you have a problem