Applying Process Simulation to Achieve High-Value Benefits

David M. Raffo, Ph.D.
Quantel, Inc.
Software Engineering Institute
Portland State University
raffod@pdx.edu
(503) 939-1720
Agenda: Part I

1. Introduction: What is Process Simulation?
2. Motivation: What can be done with Process Simulation Models?
3. Examples of High Value Add Ways the Process Simulation Can be applied within an organization
4. Wrap-Up/ Conclusions
What Is a Simulation Model?

- A simulation model is a computerized model (not a maturity model) designed to display significant features of the dynamic system it represents.

- Simulations are generally employed when
 - behavior over time is of particular interest or significance, and
 - the economics or logistics of manipulating the system being modeled are prohibitive

- Common purposes of simulation models are:
 - to provide a basis for experimentation,
 - to predict behavior,
 - to answer “what if” questions,
 - to teach about the system being modeled.
What is Process Simulation?

- Process simulation models focus on the dynamics of systems development, maintenance and acquisition projects.
- They represent the process:
 - as currently implemented (as-is, as-practiced, as-documented), or
 - as planned for future implementation (to-be).
- Simulation Features:
 - Use Graphical interfaces
 - Utilizes actual data/metrics
 - Predict performance
 - Supports “What if” Analyses
 - Support business case analyses
 - Reduces risk
Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance, V&V and IV&V Strategy for a project
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and make better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- Architect, Design, and Document Processes
- Estimate Project Costs from the Bottom Up
- Manage Projects Quantitatively
- Train Project Managers
Applying Process Simulation = High Value Add

- **Evaluate Strategic Issues**
 - Quality Assurance, V&V, and IV&V Strategy for a project
 - Globally Distributed SW Development
NASA Model – IEEE 12207 Software Development Lifecycle
IV&V Layer – Select Criticality Levels for IV&V Techniques using pull-down menus

<table>
<thead>
<tr>
<th>ID</th>
<th>IV&V Technique</th>
<th>Concept Verification</th>
<th>Requirements Verification</th>
<th>Design Verification</th>
<th>Code Verification</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Management and Planning of Independent Verification and Validation</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
</tr>
<tr>
<td>1.2</td>
<td>Issue and Risk Tracking</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
</tr>
<tr>
<td>1.3</td>
<td>Final Report Generation</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
</tr>
<tr>
<td>1.4</td>
<td>IV&V Tool Support</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
</tr>
<tr>
<td>1.5</td>
<td>Management and Technical Review Support</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
</tr>
<tr>
<td>1.6</td>
<td>Criticality Analysis</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
</tr>
<tr>
<td>1.7</td>
<td>Identify Process Improvement Opportunities in the Conduct of IV&V</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
<td>2 2</td>
</tr>
<tr>
<td>2.1</td>
<td>Reuse Analysis</td>
<td>3 3</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2.2</td>
<td>Software Architecture Assessment</td>
<td>3 3</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2.3</td>
<td>System Requirements Review</td>
<td>3 3</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2.4</td>
<td>Concept Document Evaluation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2.5</td>
<td>Software/Requirements Allocation Analysis</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2.6</td>
<td>Traceability Analysis</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>3.1</td>
<td>Traceability Analysis – Requirements</td>
<td>2 2</td>
<td>4 4</td>
<td>4 4</td>
<td>4 4</td>
<td>4 4</td>
</tr>
<tr>
<td>3.2</td>
<td>Software Requirements Evaluation</td>
<td>3 3</td>
<td>4 4</td>
<td>4 4</td>
<td>4 4</td>
<td>4 4</td>
</tr>
<tr>
<td>3.3</td>
<td>Interface Analysis – Requirements</td>
<td>4 4</td>
<td>4 4</td>
<td>4 4</td>
<td>4 4</td>
<td>4 4</td>
</tr>
</tbody>
</table>
IV&V Layer – Select Criticality Levels for IV&V Techniques using pull-down menus

<table>
<thead>
<tr>
<th>Section</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.15</td>
<td>None</td>
</tr>
</tbody>
</table>
Impact of IV&V at Different Points in the Development Process

Result Comparison

<table>
<thead>
<tr>
<th>Case</th>
<th>Configuration</th>
<th>Total Effort Mean (Person Months)</th>
<th>Rework Effort Mean (Person Months)</th>
<th>Duration Mean (Months)</th>
<th>Corrected Defects Mean (Number of Defects)</th>
<th>Latent Defects Mean (Number of Defects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline</td>
<td>346.26</td>
<td>201.65</td>
<td>58.42</td>
<td>6,038.26</td>
<td>629.48</td>
</tr>
<tr>
<td>2</td>
<td>IV&V at Validation</td>
<td>355.35</td>
<td>210.75</td>
<td>59.95</td>
<td>6,113.79</td>
<td>574.17</td>
</tr>
<tr>
<td>3</td>
<td>IV&V at Code</td>
<td>334.13</td>
<td>189.53</td>
<td>57.38</td>
<td>6,134.84</td>
<td>573.49</td>
</tr>
<tr>
<td>4</td>
<td>IV&V at Design</td>
<td>327.93</td>
<td>183.33</td>
<td>56.56</td>
<td>6,123.11</td>
<td>581.27</td>
</tr>
<tr>
<td>5</td>
<td>IV&V at Requirements</td>
<td>326.82</td>
<td>182.21</td>
<td>56.40</td>
<td>6,078.87</td>
<td>600.04</td>
</tr>
</tbody>
</table>

% Improvement Compared to the Baseline

<table>
<thead>
<tr>
<th>Case</th>
<th>Configuration</th>
<th>Total Effort Mean</th>
<th>Rework Effort Mean</th>
<th>Duration Mean</th>
<th>Corrected Defects Mean</th>
<th>Latent Defects Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IV&V at Validation</td>
<td>-2.63%*</td>
<td>-4.51%*</td>
<td>-2.63%*</td>
<td>+1.25%</td>
<td>+8.79%*</td>
</tr>
<tr>
<td>3</td>
<td>IV&V at Code</td>
<td>+3.50%*</td>
<td>+6.01%*</td>
<td>+1.77%</td>
<td>+1.60%</td>
<td>+8.90%*</td>
</tr>
<tr>
<td>4</td>
<td>IV&V at Design</td>
<td>+5.29%*</td>
<td>+9.09%*</td>
<td>+3.17%*</td>
<td>+1.41%</td>
<td>+7.66%*</td>
</tr>
<tr>
<td>5</td>
<td>IV&V at Requirements</td>
<td>+5.62%*</td>
<td>+9.64%*</td>
<td>+3.46%*</td>
<td>+0.67%</td>
<td>+4.68%*</td>
</tr>
</tbody>
</table>
GSD Model Structure

Global SD

Planning

Control

Workforce Needed

Site-specific SD

Site 1

Site 2

Interaction Effect

Global DES

Site-specific DES

Site-specific DES

HR = Human Resource

MP = Manpower Allocation

PD = Productivity

QA = Quality Assurance
Interaction Effects (IE)

- Capture the impact of GSD factors on productivity and defect generation rate.
- Interaction effect on productivity rate
Evaluate Process Tradeoffs

- Task Allocation Strategy Alternatives
Ideal Situation

- Duration when using follow-the-sun is 70% of the time it takes using single-site.
- Module-based took a little longer than follow-the-sun.
Real World Situation

- Follow-the-sun took about 37% longer than single-site
- Module-based is the shortest
Key Questions GSD Models Can Address

- Impact of moving to multi-site development
- Impact of adding a new development site
- Task allocation strategy
- Multi-site QA strategy
- Impact of different development sites using different processes, people and technology
- Deals with issues due to cultural, language, time zone, productivity and cost differences
- Examines impact of personnel turnover and skills development
Applications for System Acquisition

- Can assess impact of using prime with collection of subcontractors at different sites (i.e. software acquisition model)
- Impact of short funding government projects
Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - IV&V Strategy
 - Globally Distributed Software Development

- Assess the Costs and Benefits of Applying New Tools and Technologies
Cost/Benefit of New Technologies

New LDD Technology

- 7 level 4 sub-systems
- Stable accuracies
- Massive changes in other measures

Changes to Process

1. Previous Process Steps
2. Coding
 - (to provide learning material)
3. Inspection 1
 - (to provide learning material)
4. Apply Tool
 - (learn, tune, and apply to identify "hot spots")
5. Inspection 2 of "Hot Spots" Only
6. Code Rework
7. Remaining Process Steps

Results Showing Impact on NASA Projects

<table>
<thead>
<tr>
<th>Total Size (KLOC)</th>
<th>Total Effort + IV&V (PM)</th>
<th>Total Effort (PM)</th>
<th>Total Rework Effort (PM)</th>
<th>Total Duration (Month)</th>
<th>Average Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% V&V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.79</td>
<td>815.75</td>
<td>815.75</td>
<td>198.30</td>
<td>33.80</td>
<td>29.48</td>
</tr>
<tr>
<td>4.00</td>
<td>27.97</td>
<td>27.97</td>
<td>8.58</td>
<td>1.48</td>
<td>1.26</td>
</tr>
</tbody>
</table>

reinspect 50% detcap IV&V = 0.05 & inspect 10% with detcap = 0.50

<table>
<thead>
<tr>
<th>Total Size (KLOC)</th>
<th>Total Effort + IV&V (PM)</th>
<th>Total Effort (PM)</th>
<th>Total Rework Effort (PM)</th>
<th>Total Duration (Month)</th>
<th>Average Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.79</td>
<td>813.16</td>
<td>807.16</td>
<td>190.02</td>
<td>34.24</td>
<td>29.32</td>
</tr>
<tr>
<td>4.00</td>
<td>27.89</td>
<td>27.89</td>
<td>8.35</td>
<td>1.46</td>
<td>1.26</td>
</tr>
</tbody>
</table>

reinspect 50% detcap IV&V = 0.02 & inspect 10% with detcap = 0.50

<table>
<thead>
<tr>
<th>Total Size (KLOC)</th>
<th>Total Effort + IV&V (PM)</th>
<th>Total Effort (PM)</th>
<th>Total Rework Effort (PM)</th>
<th>Total Duration (Month)</th>
<th>Average Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.79</td>
<td>810.79</td>
<td>804.79</td>
<td>187.74</td>
<td>34.20</td>
<td>29.27</td>
</tr>
<tr>
<td>4.00</td>
<td>27.81</td>
<td>27.81</td>
<td>8.13</td>
<td>1.46</td>
<td>1.25</td>
</tr>
</tbody>
</table>

reinspect 50% detcap IV&V = 0.05 & inspect 10% with detcap = 0.70

<table>
<thead>
<tr>
<th>Total Size (KLOC)</th>
<th>Total Effort + IV&V (PM)</th>
<th>Total Effort (PM)</th>
<th>Total Rework Effort (PM)</th>
<th>Total Duration (Month)</th>
<th>Average Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.79</td>
<td>814.93</td>
<td>808.93</td>
<td>191.73</td>
<td>34.28</td>
<td>29.35</td>
</tr>
<tr>
<td>4.00</td>
<td>27.87</td>
<td>27.87</td>
<td>8.30</td>
<td>1.46</td>
<td>1.26</td>
</tr>
</tbody>
</table>

reinspect 50% detcap IV&V = 0.02 & inspect 10% with detcap = 0.50
General Business Case Questions

- What is the impact of applying new tools and technologies?
- What is the economic benefit or value of the tool or technology? What is the Return on Investment?
- When is it useful and when might it be useless?
- Under what conditions does the tool or technology perform best?
- What performance standards does the tool need to achieve in order to have a positive return?
- Are there better ways to apply the tool?
Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - IV&V Strategy
- Assess the Costs and Benefits of Applying New Tools and Technologies
- **Plan Processes and Make Better Tradeoff Decisions**
- **Evaluate Process Improvement Opportunities**
Incremental Development Model
Benefits of Process Simulation

<table>
<thead>
<tr>
<th>Option</th>
<th>Project</th>
<th>Total Effort (PM) Dev Eff + Dev Rwk</th>
<th>Rework Effort Dev Defects (PM)</th>
<th>Project Duration (Calendar Months)</th>
<th>Projected Cost or Revenue delta due to Duration Change</th>
<th>Total Injected Defects</th>
<th>Corrected Defects</th>
<th>Escaped Defects</th>
<th>Rework Effort for Field Defects (PM)</th>
<th>Implementation Costs ($)</th>
<th>NPV</th>
<th>ROI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Base Case</td>
<td>200</td>
<td>90</td>
<td>18</td>
<td>$0.00</td>
<td>1150</td>
<td>990</td>
<td>160</td>
<td>40</td>
<td>$0.00</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>1</td>
<td>Implement QFD</td>
<td>190</td>
<td>75</td>
<td>17.5</td>
<td>$0.00</td>
<td>1150</td>
<td>1020</td>
<td>130</td>
<td>30</td>
<td>$100,000</td>
<td>$165,145</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td>Implement VOC</td>
<td>185</td>
<td>75</td>
<td>17</td>
<td>$100,000</td>
<td>1150</td>
<td>1050</td>
<td>100</td>
<td>20</td>
<td>$120,000</td>
<td>$185,231</td>
<td>29%</td>
</tr>
<tr>
<td>3</td>
<td>Add QuARS Tool</td>
<td>175</td>
<td>65</td>
<td>16</td>
<td>$300,000</td>
<td>1150</td>
<td>1090</td>
<td>60</td>
<td>10</td>
<td>$80,000</td>
<td>$289,674</td>
<td>88%</td>
</tr>
<tr>
<td>4</td>
<td>Eliminate</td>
<td>230</td>
<td>130</td>
<td>22</td>
<td>$(400,000)</td>
<td>1150</td>
<td>900</td>
<td>250</td>
<td>80</td>
<td>$0.00</td>
<td>-$378,043</td>
<td>-129%</td>
</tr>
<tr>
<td>5</td>
<td>Additional Process</td>
<td></td>
</tr>
</tbody>
</table>

Add QuARS Tool: Eliminate Additional Process
Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - IV&V Strategy
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and Make Better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- *Architect, Design, and Documenting Processes*
Architect, Design and Document Processes

Process Simulation Model

Life Cycle Model Templates

Generic Process Model Blocks

Generalized Process Components

Req1: Use Case Analysis
Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - IV&V Strategy
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and Make Better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- Architect, Design, and Documenting Processes
- *Estimate Project Cost from the Bottom-Up*
Using Process Simulation to perform early stage project cost estimation

- Study Conducted by Mizell, in the Engineering Assessment Directorate at KSC
- Applied Process Simulation to provide bottom-up cost and schedule estimates at multiple stages of the project (i.e. from Concept of Operations forward)
- Utilized real project data from KSC and SEL
- Developed estimates that incorporated effects for
 - Incremental Spiral processes
 - Impact of short funding projects
NASA Model – Incremental Spiral Lifecycle

Adapted from Mizell, 2006
Accomplishments of Mizell’s Research

- Methodology to use simulation to provide interval estimates
- Developed probability distributions for size, productivity, and defects using organization specific data
- Provided confidence intervals for project estimates
- Combined system dynamics model with DES process model to analyze effects of turnover on project effort and duration
- Adapted incremental spiral process model
- Complete NASA project case study

© Mizell, 2006
Process Models Used

- IEEE 12207 being used by NASA IV&V
- Adapted for incremental development
- Adapted for spiral development
- Incorporated system dynamics portions into model
- Model development supported by Quantel
Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - IV&V Strategy
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and Make Better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- Architect, Design, and Documenting Processes
- Estimate Project Costs from the Bottom-Up
- Manage Processes Quantitatively
Are You on Target?

Original Plan

Actual Data

Corrective Action

Current Trajectory
NASA SW Project and IV&V

Project and IV&V Data

SW Process Simulation Model

Better IV&V Decisions

Track and Replan Improved Outcomes

Process Performance Cost, Quality, Schedule

Outcome Based Control Limits
PROMPT Control and Feedback Loop

1. **Process and Project Data**
2. **Updated Model Parameters**
3. **SW Process Simulation Model**
4. **Metrics Repository**
5. **Outcome Based Control Limits**
6. **Performance Predictions from Model**
7. **Primary Loop**
 - **Is the Process In Control?**
 - Yes: Continue to Execute Process
 - No: Yes, Use Simulation to evaluate corrective action alternatives
8. **Secondary Loop**
 - **Is corrective action necessary?**
 - Yes: Identify Possible Process Improvements
 - No: Implement Best Corrective Action

PROMPT Control and Feedback Loop

- **SW Development Process**
- **Performance Predictions from Model**
- **Outcome Based Control Limits**
- **Updated Model Parameters**
- **Metrics Repository**
- **Process and project data**
- **Primary Loop**
 - **Is the Process In Control?**
 - Yes: Continue to Execute Process
 - No: **Secondary Loop**
 - **Is corrective action necessary?**
 - Yes: Identify Possible Process Improvements
 - No: Implement Best Corrective Action
Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - IV&V Strategy
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and Make Better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- Architect, Design, and Documenting Processes
- Estimate Project Costs from the Bottom-Up
- Manage Processes Quantitatively

Train Project Managers
Teaching Software Project Management through Modeling (Navarro, et. al., 2006)
Benefits of Process Simulation

- Decision Support and Tradeoff Analysis
- Sensitivity Analysis – “What if”
- Supports Industry Certification and process improvement programs including CMMI, Six Sigma, and others
- Benchmarking
- Design and Define Processes/Metrics
- Bring Lessons Learned Repositories Alive
- Can save cost, effort, and expertise
- Many ways to achieve High Value-Add by using process simulation
Bottom-Line

- Process Simulation can make an impact on your business.
 - Improving QA strategies (defect containment, COQ, COPQ)
 - Achieving higher CMMI Levels (Fulfilling CMMI L4)
 - Implementing 6 Sigma practices
 - Adopting new technologies
 - Plan/replan projects
 - Bottom-up cost estimation

- Enables an organization to adapt to change and improve processes more quickly – beating the competition, win contracts

- Enables an organization to design processes better, train employees, implement more quickly = better performance, higher quality, faster
The End

Questions?
Applying Process Simulation to Achieve High-Value Benefits

David M. Raffo, Ph.D.
Quantel, Inc.
Software Engineering Institute
Portland State University
Agenda: Part II

- Overview of Simulation Types
- Process Tradeoff Analysis Method
 - Data
 - Model Templates
 - Model Database
 - Analysis of Results
- Incremental Model tour
- Conclusions
Alternative Process Simulation Approaches

- Modeling Paradigms
 - Knowledge-Based Systems
 - Agent Based
 - State-Based
 - Discrete Event
 - System Dynamics
 - Hybrid

- Research Outlets
 - Software Process: Improvement and Practice
 - Journal of Systems and Software

- Tools
 - Arena
 - ProModel
 - Extend
 - Stella
 - VenSim
 - Research tools

- Conferences
 - Winter Simulation Conference
 - SPW/ ProSim
 - SEPG
 - SSTC
Alternative Process Simulation Approaches

- Knowledge Based Systems
 - Person-in-the loop
 - Fine level of granularity
 - Supports process enactment

- Agent Based Systems
 - Fine level of granularity
 - Supports detailed work interactions

- State Based Systems
 - Captures flow of control (work activities, parallelism) well
 - Multi-view graphical representations
 - Difficult to capture task, work package and resource details
Alternative Process Simulation Approaches

- **Discrete Event Simulation**
 - Able to represent richness of processes, work packages and resources
 - Good for modeling quantitative process performance
 - Good tool support

- **System Dynamics**
 - Captures feedback well
 - Often used for high level qualitative issues

- **Hybrid**
 - Captures best aspects of Discrete Event and System Dynamics
 - Models are complex
 - Being used to predict performance of multi-site development
Common Applications of Each Approach

<table>
<thead>
<tr>
<th></th>
<th>STRAT</th>
<th>PLAN</th>
<th>MGMT</th>
<th>IMPR</th>
<th>UNDR</th>
<th>TRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Agent Based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>State-Based</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Discrete Event</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>System Dynamic</td>
<td>X</td>
<td>x</td>
<td></td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hybrid</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Development Projects

Project and Process Data

- Organizational
- Site and Project
- Industry Standard

SW Process Simulation Model

Financial Benefits
- NPV, ROI

Better Process Decisions

PATT Project Database

Project Performance
Where does the data come from? (1 of 2)

- Input data are used to predict the performance measures.

- Can be derived from the organization
 - Current baseline
 - Exemplary projects
 - Pilot data

- Can also be derived from
 - Expert opinion
 - Industry data from comparable organizations

- Best judgments to describe the state of your organization
Input Data (2 of 2)

- **Examples:**
 - process documents and assessments
 - amount of incoming work
 - effort based on size (and/or other factors)
 - defect detection efficiency
 - effort for rework based on size and number of defects
 - defect injection, detection and removal rates
 - decision point outcomes; number of rework cycles
 - hiring rate; staff turnover rate
 - personnel capability and motivation, over time
 - resource constraints
 - frequency of product version releases
Creating Process Simulation Models

Management Dashboard → Process Simulation Model → PATT Project Database

Life Cycle Model Templates
- REQ → DES → IMP → TEST → CUST
- TP → TCG

Generic Process Model Blocks
- Development
- Inspection
- Testing
- Rework
- IV&V
- Joint Reviews

Generalized Process Components
- Req1: Use Case Analysis

- IEEE 12207
- Spiral
- Incremental
- Product Line
- Rapid Prototyping
Customizing PATT
Multiple block types implement SW development techniques

- Development blocks develop product and inject defects
- Inspection blocks detect defects
- Testing blocks detect defects
- Rework blocks correct and inject defects
- Joint Review blocks detect and correct defects.
- IV&V blocks detect defects.
Project Data Base

- Inputs
 - Size, productivity, error potential, consequence, defect injection, detection, and correction rates, cost, duration, etc.

- Outputs
 - Customizable reporting
 - All levels - Project, phase, activity levels
 - Costs reported using COQ format
 - Defect containment statistics
 - Special reports for IV&V
Project Database

IEEE12207Data: Database (Access 2000 file format)

Objects

Tables

- Create table in Design view
- Create table by using wizard
- Create table by entering data
- Entity_Info
- Entity_List
- Fan_Out
- Input_Parameters
- Ivv_Activity_Statistics
- Ivv_Input
- Ivv_Phase_Data
- Ivv_Phase_Statistics
- IVV_Profiles
- Ivv_Statistics

- Ivv_Step_Data
- Ivv_Totals
- Parameter_Information
- Parameter_Names
- Project_Activity_Efforts
- Project_Activity_Statistics
- Project_Data
- Project_Level_Info
- Project_Phase_Data
- Project_Phase_Statistics
- Project_Statistics
- Project_Step_Data
- Project_Totals
Development Project Total Effort/Duration Statistics

<table>
<thead>
<tr>
<th>Run Set</th>
<th>Size</th>
<th>Total Effort</th>
<th>Network Effort</th>
<th>Duration</th>
<th>Avg. Duration</th>
<th>Corrected Defects</th>
<th>Latent Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev</td>
<td>Mean</td>
<td>Std. Dev</td>
<td>Mean</td>
<td>Std. Dev</td>
<td>Mean</td>
</tr>
<tr>
<td>1</td>
<td>98.59</td>
<td>0.00</td>
<td>57,876.16</td>
<td>30,541.63</td>
<td>5,364.34</td>
<td>2,631.64</td>
<td>5,878.40</td>
</tr>
<tr>
<td>2</td>
<td>98.59</td>
<td>0.00</td>
<td>58,052.90</td>
<td>30,541.63</td>
<td>5,351.82</td>
<td>2,375.64</td>
<td>5,878.40</td>
</tr>
<tr>
<td>3</td>
<td>98.59</td>
<td>0.00</td>
<td>60,804.74</td>
<td>33,233.51</td>
<td>5,545.17</td>
<td>2,557.96</td>
<td>5,804.28</td>
</tr>
<tr>
<td>4</td>
<td>100.48</td>
<td>0.00</td>
<td>61,794.80</td>
<td>33,756.25</td>
<td>5,256.44</td>
<td>2,335.78</td>
<td>5,901.19</td>
</tr>
<tr>
<td>5</td>
<td>98.59</td>
<td>0.00</td>
<td>58,652.66</td>
<td>30,541.63</td>
<td>5,452.80</td>
<td>2,645.37</td>
<td>5,878.40</td>
</tr>
<tr>
<td>6</td>
<td>98.59</td>
<td>0.00</td>
<td>58,652.66</td>
<td>30,541.63</td>
<td>5,452.80</td>
<td>2,645.37</td>
<td>5,878.40</td>
</tr>
</tbody>
</table>
PATT Architecture

Model Engine
- PATT Model
 - Simulation Model
 - LC Templates
 - Phases
 - Blocks
 - Connectors
 - Libraries and Extensions

Database Engine
- PATT Database
 - Tables
 - Custom Reports
 - Model Specific
 - PATT DB Structure

Analysis Engine
- PATT Output Analyzer
 - Sensitivity Analysis
 - Design of Experiments
 - Configuration Analysis
Benefits of Process Simulation

<table>
<thead>
<tr>
<th>Option</th>
<th>Project</th>
<th>Total Effort (PM)</th>
<th>Rework Effort (Dev)</th>
<th>Project Duration (Calendar Months)</th>
<th>Projected Cost or Revenue delta due to Duration Change</th>
<th>Total Injected Defects</th>
<th>Corrected Defects</th>
<th>Escaped Defects</th>
<th>Rework Effort for Field Defects (PM)</th>
<th>Implementation Costs ($)</th>
<th>NPV</th>
<th>ROI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Base Case</td>
<td>200</td>
<td>90</td>
<td>18</td>
<td>$0.00</td>
<td>1150</td>
<td>990</td>
<td>160</td>
<td>40</td>
<td>$0.00</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>1</td>
<td>Implement QFD</td>
<td>190</td>
<td>75</td>
<td>17.5</td>
<td>$0.00</td>
<td>1150</td>
<td>1020</td>
<td>130</td>
<td>30</td>
<td>$100,000</td>
<td>$165,145</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td>Implement VOC</td>
<td>185</td>
<td>75</td>
<td>17</td>
<td>$100,000</td>
<td>1150</td>
<td>1050</td>
<td>100</td>
<td>20</td>
<td>$120,000</td>
<td>$185,231</td>
<td>29%</td>
</tr>
<tr>
<td>3</td>
<td>Add QuARS Tool</td>
<td>175</td>
<td>65</td>
<td>16</td>
<td>$300,000</td>
<td>1150</td>
<td>1090</td>
<td>60</td>
<td>10</td>
<td>$80,000</td>
<td>$289,674</td>
<td>88%</td>
</tr>
<tr>
<td>4</td>
<td>Eliminate</td>
<td>230</td>
<td>130</td>
<td>22</td>
<td>$(400,000)</td>
<td>1150</td>
<td>900</td>
<td>250</td>
<td>80</td>
<td>$0.00</td>
<td>-$378,043</td>
<td>-129%</td>
</tr>
<tr>
<td>5</td>
<td>Additional Process</td>
<td></td>
</tr>
</tbody>
</table>
Computations and Tradeoffs

- Sensitivity Analysis
- Design of Experiments
- Business Case – ROI, NPV
- Methods in use and available
Demonstration of the Incremental Model
Simulation User-Levels

- Level 1: Manager - Runs simulations based on pre-determined options
- Level 2: Analyst - Able to add or change the process to study the impact of process changes
- Level 3: Expert - Able to create new models from scratch
- Level 4: Developer - Able to program new block and/or modify the logic of existing blocks, as allowed by the security model
- Level 5: Originator – Establishes security model
Process Tradeoff Analysis Method (PTAM)

- Based on extensive research into Software Process Modeling conducted in academia, SEI and industry.
- Graphical user interface and models software processes
- Integrates SEI methods to define processes and supports CMMI PAs (CMMI L4 QPM)
- Supports Industry Certification Programs including CMMI, Six Sigma, and others
- Benchmarking
- Integrates metrics related to cost, quality, and schedule into understandable project performance picture.
- Predicts project-level impacts of process improvements in terms of cost, quality and cycle time
Process Tradeoff Analysis Method (PTAM)

- **Support business case analysis** of process decisions - ROI, NPV and quantitatively assessing risk.
- **Reduces risk** associated with process changes by predicting the probability of improvement
- **Saves time, effort and expertise** over other methods
Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance, V&V and IV&V Strategy for a project
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and make better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- Architect, Design, and Document Processes
- Estimate Project Costs from the Bottom Up
- Manage Projects Quantitatively
- Train Project Managers

Process Simulation can make a positive impact on your business!
The End

Questions?