Chemical Biological Individual Protection Conference Charleston, South Carolina, 7-9 March 2006

# **Filtration Technology**

### Christopher J. Karwacki Gregory Peterson Amy Maxwell

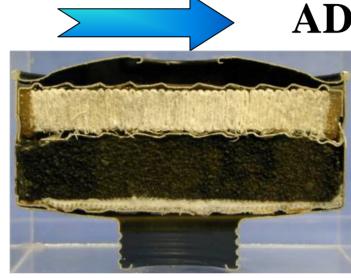
Edgewood Chemical Biological Center Research & Technology Directorate Chemical Biological Filtration Team

## **Past-Present-Future**

| 1940s      | 1950-60        |                                | 1980   |             |        |              | 2000-10       |
|------------|----------------|--------------------------------|--------|-------------|--------|--------------|---------------|
| M11 Filter |                | M13 Filter                     |        | C2 F        | Filter |              | JSGPM Filter  |
| H-Capacity |                | Sorbent/HEPA                   |        | M-Ca        | pacity |              | Primary CWA   |
| H-dP       |                | L-M Capacity                   |        | М           | dP     |              | Secondary TIC |
| H Weight   |                | M dP                           |        | MW          | eight  |              | Packed Bed    |
| H Profile  |                | L weight                       |        | M Profile   |        | L-M Capacity |               |
|            | L Profile      |                                |        |             | L-M dP |              |               |
|            |                |                                |        |             |        | L-M Profile  |               |
| 2010       |                |                                | 2020 + |             |        |              |               |
|            | NGGPM Filter   |                                |        |             |        |              |               |
|            | Composite Beds |                                |        | Non Sorbent |        |              |               |
|            |                |                                |        |             |        |              |               |
|            | Interchar      | ngeable Media                  |        |             | S      | СВА          |               |
|            |                | ngeable Media<br>Spectrum Prot |        |             | S      | СВА          |               |
|            | Broad S        | •                              |        |             | S      | CBA          |               |
|            | Broad S<br>L-0 | pectrum Prot                   |        |             | S      | CBA          |               |

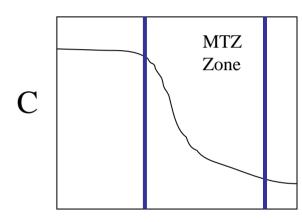
## **Direction and Challenges**

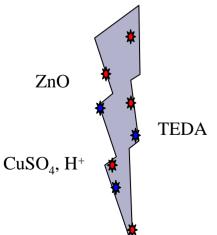
- Rapid Advancement In Sorbent Technology
- New Requirements
  - Increasing Number And Classes Of Chemicals
- Technical Challenges
  - Broad Spectrum Protection
  - Small Integrated Envelope
  - Lightweight And Acceptable Pressure Drop


## **Direction and Challenges**

- Current Filters Continue To Be Oriented To Granular Packed Bed.
- Community Moving Towards Broader Spectrum Protection With Lower Capacity Requirements.
- There Are Improved Filter Technology Solutions In The Form Of Supported Sorbent Structures And Particulate Media That Will Offer Lower Profile Filters With Broad Spectrum Protection Capabilities.

### **Filtration Principles**


### HEPA (Particulate)

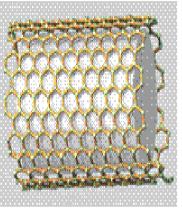

### **C2 CANISTER**



### ADSORBER

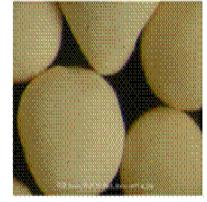
#### (Vapor)

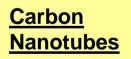


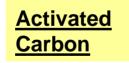



### **Adsorbent Requirements**

<sup>0</sup> Bed Depth


Microporosity for physical adsorption
 Pore distribution that can support reactants
 Basic sites for removal of acid gases
 Acid sites for removal of base-forming and basic gases
 Access to reactive sites when adsorbed water is present


## Adsorbents



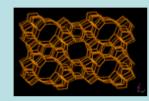













## **Sorbent Development**

#### **BF-38**

- ZSM-5
  - MFI-type zeolite
  - Acidified



#### • Removes basic/base-forming TICs

- Ammonia
- Ethylene oxide

#### ARC






- Bituminous coal based activated carbon
- Impregnated w/ copper chloride

#### **KRM-623**

ZSM-5

 MFI-type zeolite
 Alkaline

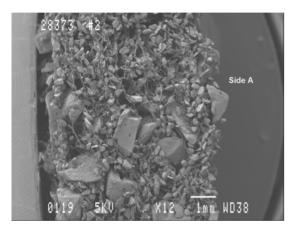


 Removes fuming nitric acid, nitrogen dioxide

#### 90/10 Blend

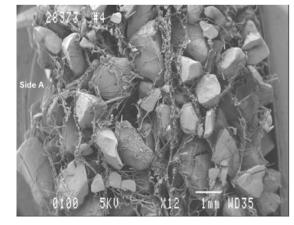


-10% acid chloride impregnated carbon


• Removes traditional CWAs + ammonia

## **Sorbent Development**

#### **SORBENT DEVELOPMENT** EO Removal Mechanism by BF-38



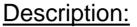

## **Advanced Adsorbent Supports**



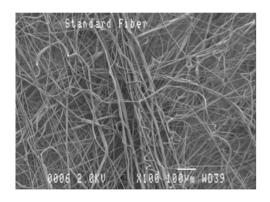
#### **Description:**

Flexible extruded web of elastomeric fibers loaded above traditional levels with broad range of treated carbon particles and with wide latitude in basis weight capability



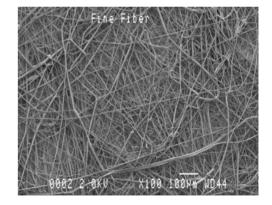

Advancement Over Fielded Systems:

- Lower pressure drop, power
- Lighter weight, less maintenance
- Broader spectrum of protection CWAs + TIC/TIMs


Source: 3M

## **Advanced Particulate Filtration**

### Electret Filter Media




Multiple pleated layers of fiberglass, membranes, or electret webs combine to provide thermally stable non-clogging filters that are resistant to: wetting, oily mist, and Chem/Bio agents.



Large Fiber (20+ micron) Standard fiber (7-10 micron)



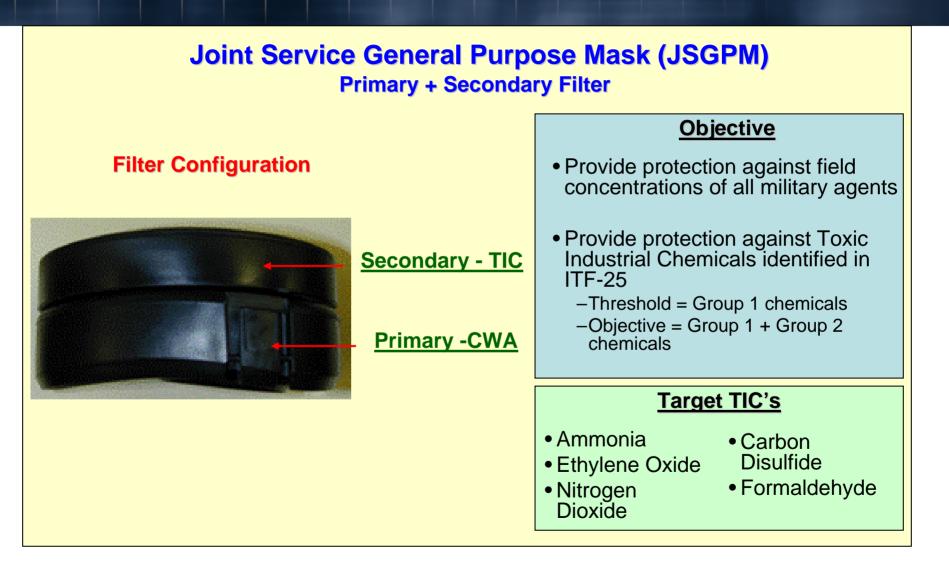


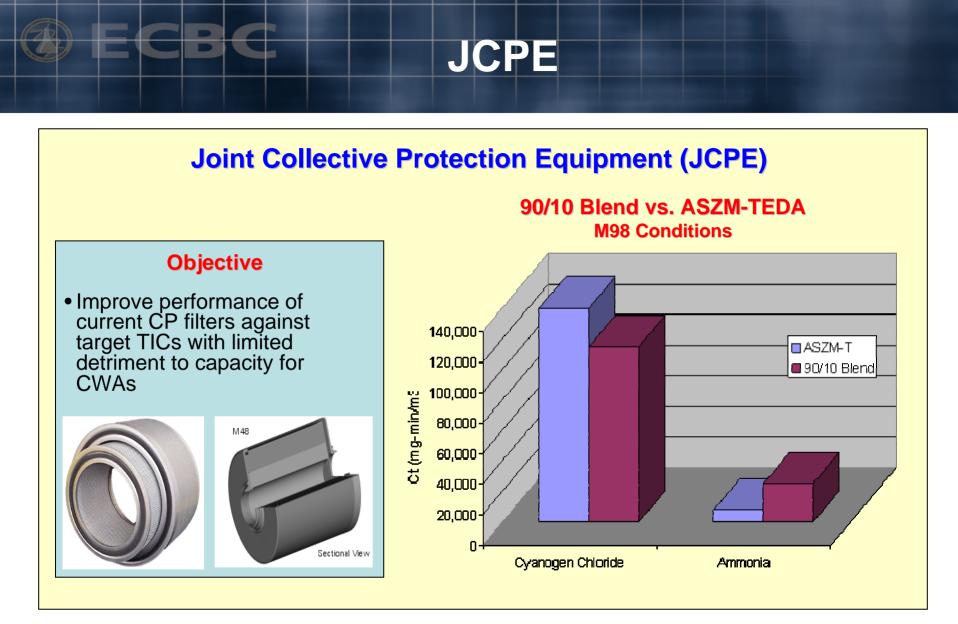
Fine Fiber (3-5 micron)

Source:3M

### **Filter Bed Design**

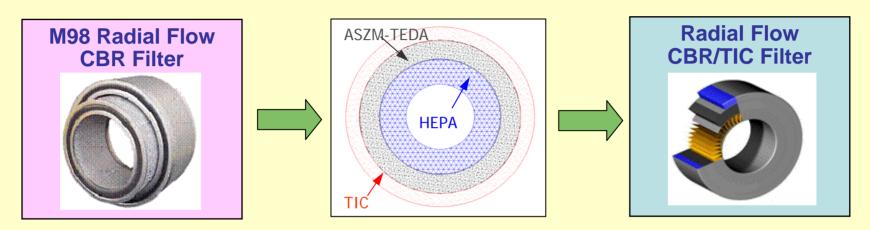
### **Radial Bed**





Radial Flow Filter - Inlet flow is directed to outer radial layer first and exits inner core, thus providing significant increase in chemical performance and reduction in airflow resistance



Split Flow Adsorber – Inlet flow is directed to center of two bifurcated cells, each containing particulate, CWA and TIC media

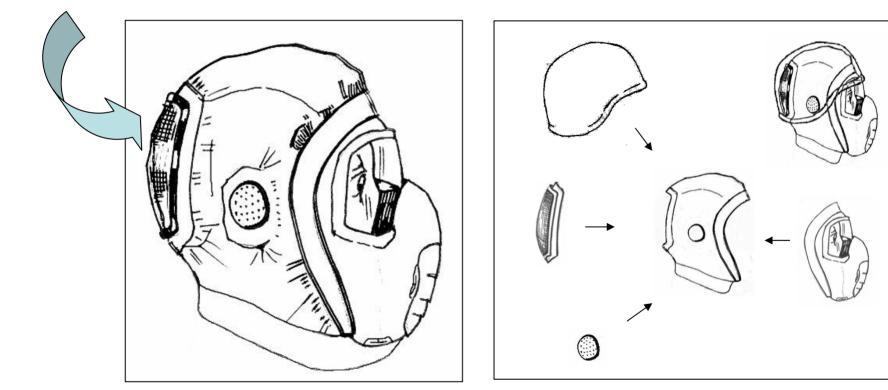

**JSGPM** 





### DARPA/NWA

### **DARPA/NWA CBR/TIC Filter**




#### **Objectives**

- Provide ammonia, ethylene oxide and other TIC protection in addition to traditional CWA protection.
- Retrofit TIC protection into M98 filter housing.

## **ECB Concepts for Next Generation General Purpose Mask**

### **Filter**



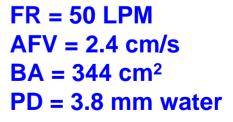
## **Sorbent Bed Type**

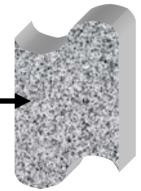
### Packed Bed

- Maximum Sorption Activity
   per unit bulk volume
- Ideal for Higher Capacity Applications (>>50K CT)
- Constrained to Narrow Spectrum Chemical Protection
- Lower Unit Cost

### Supported Bed

- Sorbent on Fiber Composite
- Ideal for Lower Capacity Applications (<50K CT)</li>
- Suitable for Broad Spectrum
   Chemical Protection
- Suitable for Large Bed Area and Shallow Bed Configurations
- Higher Unit Cost


## Effect of Filter Cross-Sectional Area on Performance




FR = 50 LPM AFV = 9.6 cm/s BA = 86 cm<sup>2</sup> PD = 15 mm water

### **Increasing Filter Area**

- Reduced AFV
- Reduced PD
- •Reduced Particle Size
  - •Thinner Beds
  - Increased Chemical
    - Performance

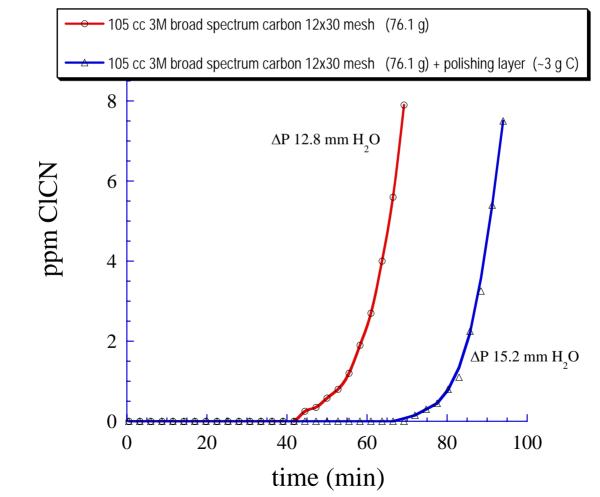




FR = 50 LPM AFV = 4.8 cm/s BA = 172 cm<sup>2</sup> PD = 7.5 mm water

## **Effect of Particle Size on Mass** Transfer Zone

### **Effect of Particle Size on MTZ**


### **Pleated Axial Flow Bed** ALC: NOT THE OWNER. 12x30 Effluent Conc. 20x40 **100 LPM** 60x150 External Area: 86 cm<sup>2</sup> AFV: <3 cm/s **Pleat Area: 600-900 cm2**

Time, min

## Flex-c Web as CK Polishing Layer

550 ppm ClCN (1350 mg/m<sup>3</sup>) 32 L/min; 93% RH

loaded into 3M 6000 series cartridges ( $\sim 67 \text{ cm}^2$ )



Source: 3M

### Summary

- For low capacity, broad spectrum protection (TIC/TIMs + CWAs) filter bed designs other than traditional packed bed sorbents may be necessary and advantageous to meet near-term and future requirements.
- **Supported Sorbents** offer a wide range of capabilities:
  - Composite thin beds with multiple sorbents
  - Suitable for non-conformal and pleated configurations
  - Smaller particle size sorbents
  - Lower airflow velocity and pressure drop
  - Flat sheet particulate media
  - Interchangeable beds and components

## Summary

- Need for MATURING supported sorbent technologies
  - Supports
  - Gradual Increase in Sorbent Capability
  - Bed Design Concepts
  - Modeling
  - Compositions/Interchangeability
  - Manufacturability QA/QC
- Need funding opportunities to MATURE technology in order to equip the Warfighter in the near-term

### Acknowledgements

- Corey Grove ECBC
- Greg Peterson ECBC
- Amy Maxwell -ECBC
- William Fritch ECBC, JPM-IP
- Britt Billingsly 3M Corporation
- Joseph Rossin Guild Associates
- Tom Van Doren New World Associates