

Dr Scott Duncan Head/Soldier and Systems Protection Group

Chemical and Biological Defence Section DRDC Suffield Defence R&D Canada

Who is Defence R&D Canada ?

 Agency within the Department of National Defence with the mandate to provide S&T advice to the Canadian Military

DEFENCE

Defence R&D Canada - Suffield

Functional Materials for CB-Protection Against the Asymmetric Threat

What do we mean by...

"Functional materials for the asymmetric threat"

Starting position ... existing CB protective materials were developed for the "Cold War"

- Not functional ...
 - thick, heavy, stiff
 - task restrictive
 - inefficient permeability
- Result ...
 - over protection (not optimised)
 - high burden

DÉFENSE

DEFENCE

- integration issues
- poor moisture management
- many commanders decision issues

Outcome ... Protective clothing and equipment drives the mission

What do we want from a functional material ?

- A material, that when incorporated into a system, will contribute to a measurable improvement in capability provided by the system, and ...
- will result in a distinct operational advantage for the users of that system

The Canadian approach

- Asymmetric threat different from Cold War
 - Alteration of Force Planning Scenarios
 - Change in Conduct of Operations
- Cold war protection and sustainment requirements are reduced by matching level of protection to threat
 - enabling superior warfighting capability, survivability and maintenance of op tempo

Capitalise on difference to develop materials that are more functional

Situate the context of use ...

Cold War

"history" – enemy was known

Asymmetric threat

 "now and future" – rogue nations/terrorist groups acting against national and global interests

Cold War battlefield

- Defensive operations in Central Europe defend in-place "terrain denial"
- Large CB weapons stockpiles warfighter faced possible large scale use of CB agents
- Fighting "dirty" for extended periods
- Wide range of delivery systems (aircraft, missiles, MLRS etc)

Asymmetric Threat battlefield

Very different from Cold War ...

- Highly mobile battlefield
- Availability of CB weapons is much smaller
- Reduced capability to deliver and sustain attacks
- Asymmetric attacks enemy avoids Force on Force, minimise technological advantage – enemy seeks disproportionate effects
- Attacks less massive, but less predictable unconventional delivery
- Real time intelligence greater situation awareness
- Greater ability of coalition Forces to dictate Op Tempo
- NATO and Coalition Air superiority

Define protection requirements for Conduct of Operations (in the Asymmetric battlespace)

- Enemy with reduced capability; less massive, less contaminated footprint; well defined operation and exit strategy
 - Chemical protection required for <<u>2 h</u>
 - Biological protection required for <30 min
- Liquid contact/vapour penetration
 - <2 µg total in 2 h</p>
- Direct vapour challenge
 - Ct of <50 mg min m⁻³ in 2 h
- Aerosol penetration
 - >90% reduction over existing

Integration of the Threat into Design

Outcome

		Protective Posture				
	Combat Uniform	MOPP 1	MOPP 2	MOPP 3	Asymmetric Threat Posture	MOPP 4
Body	Х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Feet	Х	х	\checkmark	\checkmark	\checkmark	\checkmark
Hands	Х	х	х	\checkmark	х	\checkmark
Head	Х	Х	Х	Х	Х	\checkmark
Respirator	Х	Х	Х	Х	Х	\checkmark

X – no protection

 $\sqrt{-protection}$

Asymmetric Threat Posture

- Applied in the appropriate theatre of operations...
 - well defined level of protection <u>all</u> of the time
- Rather than...
 - no protection (combat uniform)
 - logistical burden of too much protection that is not need most of the time

Functional materials

Examples of R&D effort at DRDC Suffield

Fabric based protective systems

- chemical
 - liquid
 - · vapour
- aerosol
- biological

Current IPE materials

- □ Cold War IPE (legacy) blue curve □ Post Gulf War (Horizon 1) red curve
 - Mass: 482 g m⁻²

DEFENCE

- Air Permeability: 25 cm³ cm⁻² s⁻¹
- Thickness: 2.35 mm

- Mass: 400 g m⁻²
- Air Permeability: 18 cm³ cm⁻² s⁻¹
- Thickness: 1.10 mm

Asymmetric Fabric Systems (A)

- System A-1 (green curve)
 - Mass: 200 g m⁻²
 - Air Permeability: 43 cm³ cm⁻² s⁻¹
 - Thickness: 0.59 mm

- System A-2 (blue curve)
 - Mass: 259 g m⁻²
 - Air Permeability: 48 cm³ cm⁻² s⁻¹

Asymmetric Fabric Systems (B)

- System B-1 (green curve)
 - Mass: 316 g m⁻²
 - Air Permeability: 36 cm³ cm⁻² s⁻¹
 - Thickness: 0.79 mm

- System B-2 (orange curve)
 - Mass: 375 g m⁻²
 - Air Permeability: 52 cm³ cm⁻² s⁻¹
 - Thickness: 1.02 mm

Comparison of Asymmetric Fabric Systems A-2 and B-2

- System A-2 (blue curve) and B-2 (orange curve)
 - Mass difference: A-2 (-116) g m⁻²
 - Carbon loading ratio: A-2/B-2 (2.0)
 - Air Permeability: A-2 (-4) cm³ cm⁻² s⁻¹
 - Thickness: A-2 (-0.19) mm

DEFENCE

Systems have different barrier Difference due to barrier layer

Comparison of New Asymmetric Fabric System A-2 and Current Horizon 1

- A-2 System (blue curve) and Horizon1 (red curve)
 - Mass difference: A-2 (-140) g m⁻²
 - Carbon loading ratio: A-2 /Horizon 1 (1.0)
 - Air Permeability: A-2 (+30) cm³ cm⁻² s⁻¹
 - Thickness: A-2 (-0.27) mm

DEFENCE

Enhancement of performance against vapour

- Improve by introducing an aerosol web (AW) into material system
 - System A-2: change in material properties due to AW
 - Mass (increase): from 259 to 267 g m⁻²
 - Air Permeability (decrease): from 48 to 9.5 cm³ cm⁻² s⁻¹
 - Thickness (no change): 0.83 mm
 - Challenge dosage to material at 2 h
 - 1320 mg min m⁻³; 5 m s⁻¹ wind speed

💋 DÉFENSE

DEFENCE

Enhancement of performance against aerosols

- Improve by introducing an aerosol web (AW) into material system
 - System A-2
- Challenge
 - Staphylococcus Aureus ATCC# 6538
 - Concentration 10⁶ CFU mL⁻¹
 - Aerosol size: 3 µm
 - Flow Rate: 30 LPM

Fabric System	Filtration efficiency %		
A-2 outer shell	< 1		
A-2 outer shell with AW	98.938		

Enhancement of performance against bacterial contact

- Introduce an antimicrobial finish on outer shell
 - System A-2
- Organism:
 - *Staphylococcus aureus* ATCC # 6538
- Concentration: 10⁶ CFU mL⁻¹
- Time Exposures: 24 h

Fabric System	Log ₁₀ reduction
A-2 outer shell	-
A-2 outer shell with treatment	>4.87

Summary

- We are developing protective fabric materials with properties more conducive to higher functionality
 - lighter (35%)
 - more air permeable (166%)
 - thinner (25%)
 - aerosol web that improves protection against
 - direct vapour challenge
 - penetration of aerosols
 - anti-microbial coatings to protect against contact bacteria

These improvements in the context of the Asymmetric Threat

- Enemy with reduced capability; less massive, less contaminated footprint; well defined operation and exit strategy
 - Chemical protection required for <2 h
 - Biological protection required for <30 min

Functional materials: Polymers

- Typical thickness of polymer-based materials used in current in-service military protective equipment
 - 0.50 mm (the chemical protective glove)
 - >2.0 mm (the facepiece of the C4 respirator)

Polymer Nanocomposites

- Aim is to develop micrometer thin CW agent impermeable TPE polymer films
- Nanocomposite materials successfully developed into films ~25 µm in thickness
- Benefits replace polymers in existing CB protective equipment – reduce burden and improve functionality

DEFENCE

Polymer Nanocomposites

Addition of nanoclay to polymer system

- increases crystalline fraction
- improves physical properties
 - Tear strength (+15%); uniaxial strength (no change); modulus (+50%)

TEM, 200000 x magnification

DEFENCE DÉFENSI

Polymer Nanocomposites

Addition of nanoclay to polymer system

- increases diffusion path (tortuosity)
- improves chemical resistance

nada – Suffield

Selectively Permeable Membranes

- Objective
 - develop micrometer thin water vapour permeable CW agent impermeable polymer films

Moisture vapour permeable (agent impermeable) monolithic membranes

Two phase polymer membrane

- Water diffusion
 - inverted cup method
- Permeation (simulate high water vapour pressure next to skin)
 - open cell; agent (drop-wise) 5 g m⁻²; T=30 °C
 - $\Delta H_2 O v_p = 3400 Pa across membrane$
 - no permeation through
 - $\Delta H_2 O v_p = 1500 Pa across membrane$

Nanoparticle complexes

- Objective
 - Develop nano-ordered materials/ complexes
 - control material properties to affect specific outcomes or responses
 - study of uptake of organics, reversible/irreversible adsorption, colorimetric detection, reactivity / degradation / functionalisation properties

Nanoparticle film sensing

- Surface plasmon resonance (SPR) absorption band observed in the absorption spectra of many metallic nanoparticles
 - Au particles 5-15 nm have maximum absorbance near 520 nm
- Expose Au nanoparticle film to organic vapour and monitor shift in SPR peak with time

Canada – Suffield

Summary

- Conducting operations in Asymmetric Threat environment demands different approach to protecting the soldier
- Integrate threat into design and match protection requirements to threat level
- Shorter duration protection requirements allow development of protective materials with properties more conducive to higher functionality
- Progress being made on thin nanocomposite films and thin moisture vapour permeable membranes (~25 µm)
- SPR-based sensors have real-time capability

Motto

Well defined, short duration protection available all of the time...

... is more effective than too much protection that is not needed most of the time

DEFENCE ROD DÉFENSE