

Out-of-Water Test Methods to Accelerate Implementation of Autonomous Rendezvous in the NPS ARIES AUV

CAPT J.W. Nicholson, Ph.D.

United States Naval Academy

Development: Server Vehicle Rendezvous

Challenges (As Always)

- Significant software changes requiring...
- Significant debugging
- Limited time, money, in-water opportunities

ARIES Software Modifications

ARIES State Machine

ARIES Control Architecture

Solution: Laboratory Test Program

- Hardware-in-loop software development / debugging
- Install the capability to run missions in laboratory (dry)
- Benefits
 - Time efficient
 - Cheap
 - Enhanced ability to monitor vehicle operation
 - Shortened run-debug cycle
- Barriers
 - Vehicle protective functions (abort signals: prop speed, minimum altitude)
 - Risk of equipment damage, inadvertent loss of protective functions
 - Providing simulated sensor inputs

Overcoming the Barriers to Lab Testing

- Control all modifications with a common, reliably set and cleared signal
- Block unnecessary protective signals
- Reduce prop speed by factor of 10
- Inject simulated X-Y position and GPS reception data

Original ARIES Software Architecture

Initial (Stand-alone) Software Testing

- Acoustic modem
 - Minor modification of existing software and shared memory
 - Test on ARIES using actual modem software / hardware / inputs
- State machine and queue manager function
 - Logic intensive operations, but little math
 - Exhaustive testing of inputs versus states
 - Embed into existing function (Exec.c)
 - PC (MATLAB), translate into C on ARIES
- Mission planning module
 - Math / optimization / shared memory intensive
 - Could develop on PC, but translation to C and integration in ARIES would involve a second round of significant debugging
 - ARIES (C)

Integrated Software Testing Set-up

Time-Optimal In-Lab Track

Replanned Time-Optimal Track

First In-water Run: Time-optimal Rendezvous

Summary

- Significant savings in time / effort / money
 - Several hundred runs, in days (vice months)
- Enhanced fault diagnosis, rapid correction
- Simulated sensor inputs need not be complete set, or high fidelity (judgment / trade-offs)
- Care in blocking / restoring / retesting abort and other protective functions
- Power down unnecessary vehicle components to avoid wear and tear (nav / comms equipment)
- Nominal performance first time in the water

Questions

CAPT Jack Nicholson, USN United States Naval Academy jnichols@usna.edu

Back-up Slides

RENDEZVOUS TRAJECTORY

ADVANCE, TRANSFER AND PATH LENGTH

• Used to compute spatial and temporal turn effects

• Parameterization of turn characteristics

SET OF REACHABLE STATES

TIME-OPTIMAL RENDEZVOUS POINT

ENERGY-OPTIMAL RENDEZVOUS POINT

IN-LAB RUNS

• Rendezvous request:

RVS,REQ,0,5,120,30,+/-155

ENERGY-OPTIMAL IN-LAB TRACK

ENERGY-OPTIMAL CALCULATIONS

CONTROLS AND STATES

ENERGY-OPTIMAL IN-WATER TRACK

