

Advanced Surface Launcher (ASL)

Prepared by:

Michael Connelly (NUWCDIVNPT 4124) and Dave Lussier (SEA CORP)

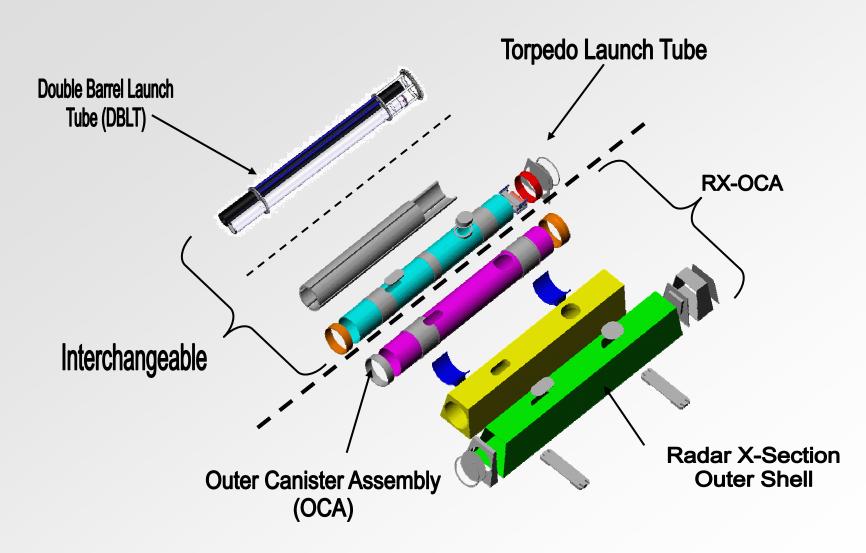
Prepared for: NDIA UMV Conference June 15, 2005

Agenda

- ASL Overview
- Summary of Testing Conducted

 Millennium High Speed Ferry Testing
 11M USV Testing
- ASL Road Ahead Summary
- UMV Applications

Why ASL?


- Proven
 - Mechanically at Technology Readiness Level 7
- Supports All-Up-Round (AUR) Concept
- Modular
 - Can be configured for a variety of platforms and payloads
- Commonality across different Navy Platforms
- Reliable
- Cost Effective
- Maintenance friendly (no high pressure air)
- Simple to configure/operate
 - Well suited for autonomous operations

ASL Components Overview

Advanced Surface Launcher

Concepts

COTS AUTOMOTIVE AIRBAG INFLATORS

- Environmentally Benign
- Maintenance Free w/ Extended Service Life
- Inherently Safe & High Reliability
- Controllable & Predictable
- Simple Electrical Interface
- DoD Hazard Classification Completed (2.2)

"SMART" ALL-UP-ROUND LAUNCH CANISTERS

- Self-Contained Launch Functionality
- Seamless Interface to Fire Control
- Low Maintenance
- Unmanned Stations

Torpedo Launch Tube Assembly (Built and Tested)

Compatible With Torpedoes MK 46, 50 and 54 (Shown with Torpedo MK 50 Installed)

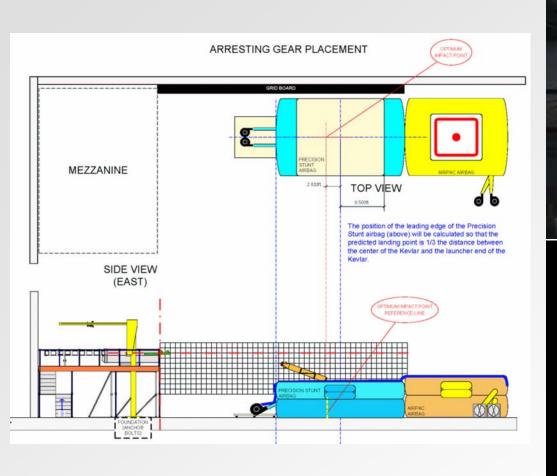
Summary of Testing Conducted

May 2004 *Millennium* High Speed Ferry

January 2005 *11M RHIB* Manned USV

May 2004 Test Platform *Millennium - High Speed Ferry*

LOA: 122 ft Beam: 33 ft Power ~ 5200 HP Speed: > 35 kts Launcher Height: 28 ft (waterline to barrel center)



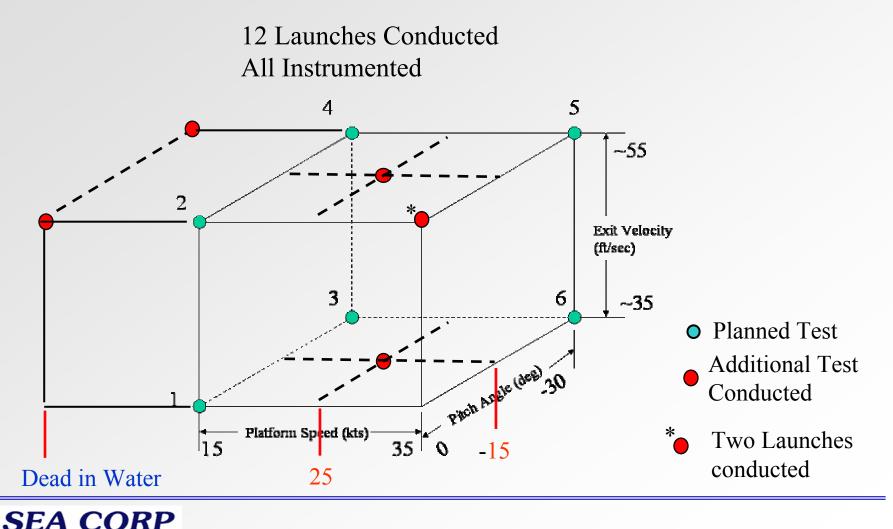
Land Based Prerequisite Testing Summary

LAUNCH #	DATE OF LAUNCH	SHAPE	WEIGHT	TLS ELEV	# OF INFL	ACTUAL ACCEL (g)	ACTUAL PRESSURE (PSI)	ACTUAL EXIT VEL (FPS)	COMMENT
Т-0	23-Apr	AIR-SLUG	N/A	HORIZ	4	N/A	N/A	Ν/Δ	AIR-SLUG TO TEST LICS TO ASL SUBSYSTEM INTERFACES.
T-1	26-Apr	54R	359	HORIZ	3	N/A	25.0	43.6	INITIAL MK 54 LAUNCH
T-2	26-Apr	54R-I	361	HORIZ	4	10.9	26.5	60.6	SECOND LAUNCH INTRODUCES INSTRUMENTATION TO REXTORP
T-3	26-Apr	50R	440	HORIZ	4	N/A	31.7	54.8	INITIAL MK 50 LAUNCH
T-4	27-Apr	50R	440	HORIZ	4	N/A	31.7	52.6	SECOND LAUNCH FOR REPEATABILITY
T-5	27-Apr	50R	361	HORIZ	3	N/A	31.2	34.5	START PROGRESSIVE INFLATOR FAILURE TESTS 4-3-2-1.
T-6	27-Apr	50R	361	HORIZ	2	N/A	32.0	18.5	CONT PROGRESSIVE INFLATOR FAILURE TESTS 4-3-2-1.
T-8	28-Apr	54R-I	361	HORIZ	3	No Data	26.9	37.0	R&D AND/OR DEMO LAUNCHES.
T-9A	30-Apr	54R-I	361	HORIZ	4	10.0	26.2	57.1	

Land Based Prerequisite Testing Facility SEA CORP Dynamic Test Facility (DTF)

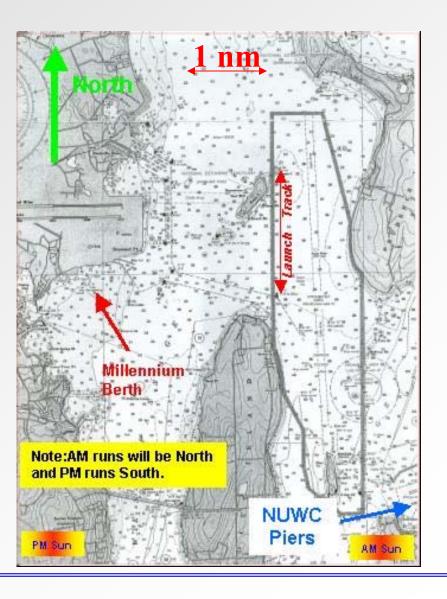
WARFARE CENTE

NEWPORT



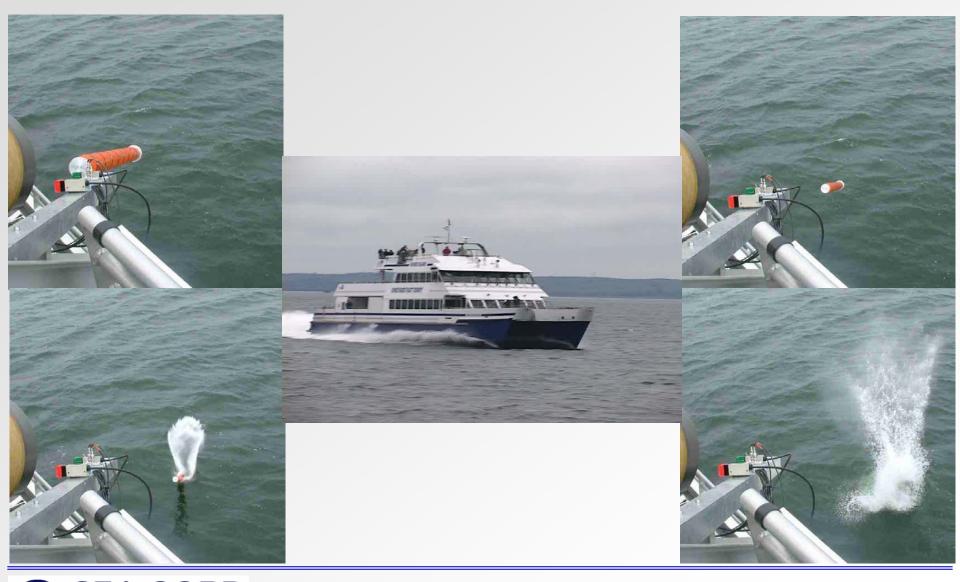
SYSTEMS ENGINEERING ASSOCIATES CORPORATION

Actual Launch window MK 54R-I Torpedo



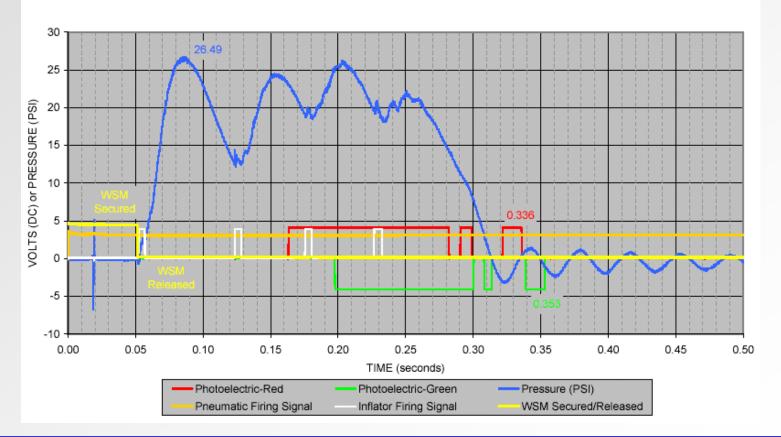
Test Location

• NUWCDIVNPT shallow water test range in Narragansett Bay



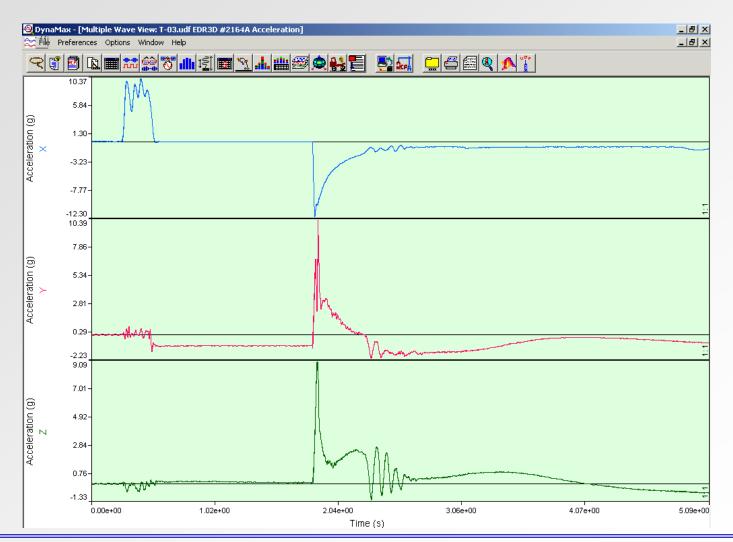
Test Images (Countermeasure Launch)

Test Images (MK 54 REXTORP Launch)



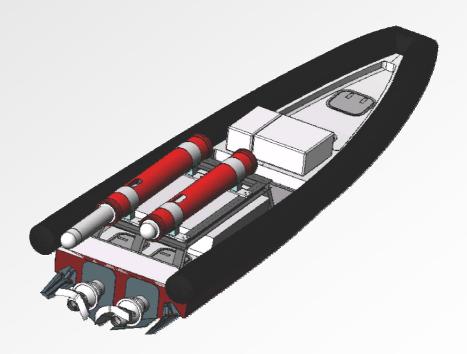
Sample of Launcher Instrumentation Data

ASL Launch Test T-3 (19 May 04, 1228) MK-54 w/ Instrumentation; 0 Degree Depression; Ships Speed =34.8 Knots Exit Velocity = 58.8 Ft/Sec; Inflator Firing Times = 0, 70, 120 & 170 ms



Sample of Motion Master Acceleration Data

Sample of Motion Master Rate Sensor Data



JAN 05 11M RHIB/ASL Test Objectives

- Demonstrate 11M RHIB capability to support ASL launch dynamics
- Evaluate ASL performance with:
 - various launch platform speeds
 - various test shapes
 - various launch exit velocities

11M RHIB/ASL

Land Based Prerequisite Testing Summary

DAY	LNCH #	SHAPE	WEIGHT	INFL TYPE APH- 1A	INFL TYPE ASH 2.2	MAX PRESSURE (PSI)	MAX REACTION FORCE (LBS)	EXIT VELOCITY (FT/SEC)	COMMENT
ONE	Т-0	AIR- SLUG	N/A	5	1	N/A	N/A	N/A	
10/27	T-1	50L	440	3	1	28.8	3675	34.8	
	T-2	50L	440	3	1	28.3	3611	34.8	
тwo	T-3	50L	440	3	1	32.1	4096	35.7	
10/28	T-4	46H	518	3	1	27.9	3560	31.3	
	T-5	50L	440	3	1	29.4	3752	34.5	Confirm booster drops Max pressure by 2-3 psi when compared to T-1 and T-3.
	T-6	50L	440	3	0	30.2	3854	34.5	Without Booster. Repeat of Millennium shot with heavier LWT.
	T-7	54H	606	3	1	26.6	3394	30.3	Motion Master trigger point not reached.
THREE 10/29	T-8	54H	606	3	1	26.9	3433	29.4	
	T-9	50H	753	3	1	32.7	4173	25	
	T-10	54H	606	5	1	27.3	3484	45.5	
	T-11	54H	606	5	1	27.8	3548	43.5	Noticed 3rd peak about 2 psi lower then T- 10. Believe due to inflator KPA variation.
FOUR	T-12	50H	753	3	1	30.1	3841	24.4	Measured Strain on Breech Plate.
11/1	T-13	50L	440	4	1	30	3828	55.6	Measured Strain on Breech Plate.
	T-14	50H	753	5	1	31.3	3994	41.7	Measured Strain on Breech Plate.
FIVE	T-15	50H	753	5	1	30.3	3867	40	
11/2	T-16	46H	518	5	1	29.7	3790	47.6	With pinger attached to propeller using muffler bracket. No damage to pinger.
SIX 11/8	T-17	46H	518	5	1	27	3445	47.6	With pinger attached to propeller using muffler bracket. No damage to pinger.
			TOTAL:	69	17				

Grey shade indicates low speed Time Delays for SPARTAN Testing

Purple shade indicates high speed Time Delays for SPARTAN Testing

Test Parameters

- Payload Configurations
 - Torpedo shapes 440-750lbs
 - CM shape @ 140lbs
- Low and High exit launch velocities
 - 25 ft/sec \rightarrow 59 ft/sec
- Various Boat Speeds
 - Dead in the Water (DIW) to 10kts
 - Constraint of 10kts due to current test support fixture design
 - Expect flank speed capability in future testing

11M RHIB/ASL JAN 05 Demo Run Table/Results Summary

INCU#		WEIGHT	BOAT	# INFLATORS		MAX	ACTUAL EXIT	SHAPE MAX G's						11-M RHIB MAX G's			
LNCH#	SHAPE		SPEED (kts)	APH-1A	ASH 2.2	PRESSURE (PSI)	VELOCITY (FPS)	Launch			Water Entry						
				AF II-IA	АЗП 2.2			Χ	Y	Z	Х	Y	Z	X	Y	Z	
Т-0	N/A	N/A	5	5	1	N/A	N/A										
T-1	50L	440	5	3	1	29	34.8*										
T-2	54I	608	5	3	1	25.9	29.4	5.3	0	0	0	3.1	0	0.5	0.7	0.6	
Т-3	50H	753	5	3	1	27.8	24.4							0.8	1.8	3.2	
T-4	50L	440	10	4	1	27.3	55.6*							0.8	2.1	1.2	
T-5	54I	608	5	5	1	27.8*	43.5*	5.7	0	0	0	1.7	0	0.5	1.2	1	
T-6	54I	608	10	5	1	27.8*	43.5*	5.8	0	0	0	2	0	0.7	1.9	1.6	
T-7	50H	753	10	5	1	30.3*	40*							0.8	3.2	3.9	
T-8	54I	608	DIW	5	1	25.9*	29.4*	5.2	0	0	0	3.2	0	0.4	1.3	1.5	
T-9	50H	753	DIW	5	1	30.3*	40*							0.8	1.5	2.2	
				ASH 2.2	ASH 2.1												
CM-0	ITD	140	DIW	2	1	N/A	N/A										
CM-1	ITD	140	5	0	1	73	27										
CM-2	ITD	140	5	1	1	110.3	43.5										
CM-3	ITD	140	10	2	1	110.4	58.8										
					* No pres	sure & velo	city data availab	le (use	d DTF	data)							

- **Axes Definitions:**
 - X: Fore/Aft
 - Y: Athwartships
 - **Z:** Vertical

11M RHIB/ASL JAN 05 Demo Video



LCS ASW Mission Module Component Options

Launched Payloads Common Mechanical Footprint + Common Electrical Interface to USV

Sensors Deployable from MH-60R, same USV, other USV, or LCS host

ASW Mission Module Component Options (cont)

- Many combinations exist for equipping USVs with ASW components
 - USV payload weight constraint
 - Tradeoff with fuel capacity/USV range/duration/Sea Frame constraints
 - ASW mission must be modeled/optimized to choose best mix of components for deployment on USV

For any combination of launchable payloads: The ASL Team can design/build/prototype/test any combination that will be reliable for autonomous launch from a USV.

ASL Team recommendation: Out of the 90+ combinations of USV ASW components, focus on ~10-15 and design the structural interface to the USV for "plug & play" for those combinations. Give the warfighter flexibility in theatre.

ASL Road Ahead Summary

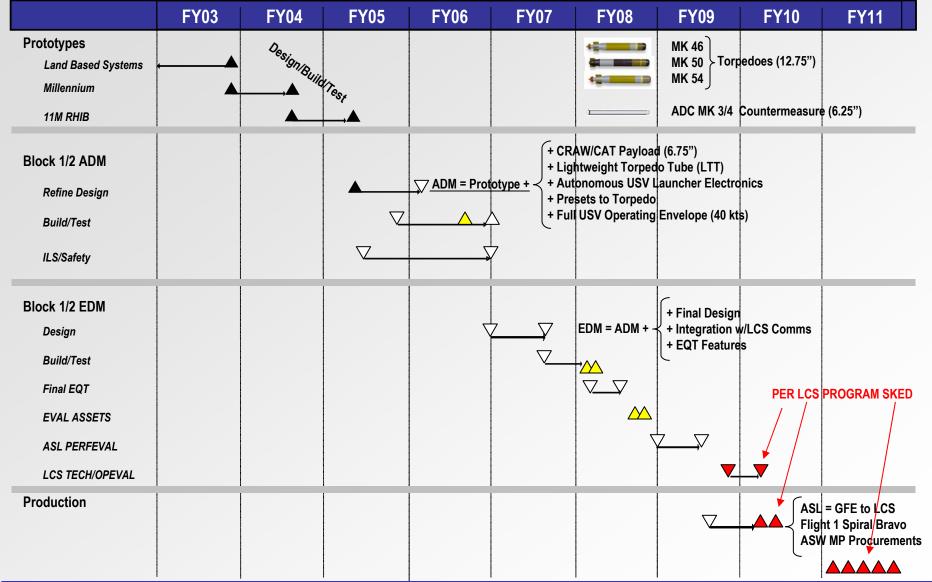
ASL Configurations Block Definitions

$Prototype \longrightarrow ADM \longrightarrow EDM \longrightarrow Production$

ASL Block 1 = Mk54 torpedo capability from an 11M USV

				USV	DDG 51	LCS	DD(X)	TBD
			MK 54	1	3?			
	TORPEDOE	S	MK 50		3?			
			MK 46					
5		5	CRAW	2				
0	6X	6.75	CAT	2A?				
PAYLOADS	UN	6.25	ADC CMs	2				
	SLC		Sonobuoys					
	320		EMATT					
	UAVs		SLC (Coyote)					
	UAVS		SWARM					
			ADC CMs					
	3X		SSXBT / SSXSV / Others					
			Pyros / Smokes					
	UUVs		MARV					
	0043		UUV TBD					

PLATFORMS



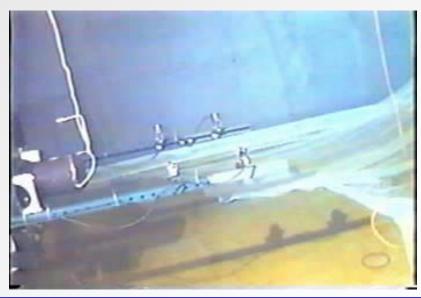
Advanced Surface Launcher (ASL)

- Currently working on the following ASL ADM Block 1 development tasks:
 - New 11M RHIB (USV) ASL mounting structure
 - Supports full USV operational envelope (35kts+ and sea state 3)
 - New ASL Electronics
 - Supports autonomous USV torpedo preset and launcher control
 - New Lightweight Torpedo Tube (LTT)
 - Same principle as internal torpedo tube used in JAN 05 demo
 - Without Outer Canister Assembly (OCA)
 - Lighter weight
 - New lightweight 6.25" payload (ADC Mk3/4) launcher development
 - New lightweight 6.75" payload (CRAW/CAT) launcher development

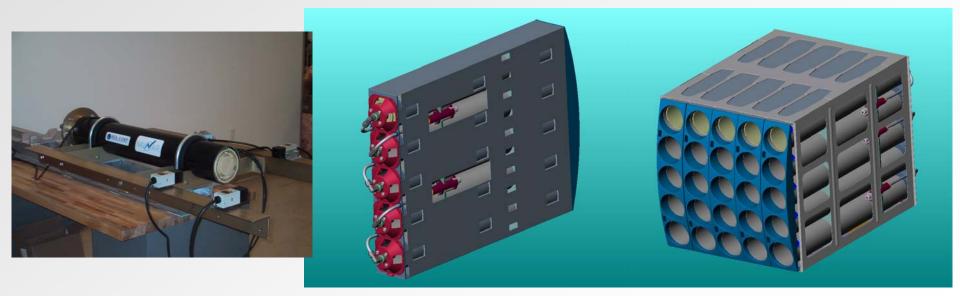
• ASL Concept of Launch:

- Optimal for autonomous and reliable launch operations
- Proven through at-sea testing
- Capable of being configured for multiple payload types
- ASL development for other payloads can be done simultaneously as current Block 1 initiatives

UMV Applications


- 12.75" UUV (MARV)
 - Easy adaptation of existing torpedo configuration to MARV
 - Must accommodate antenna or redesign retractable antenna
- Other UUVs or UAVs
 - Given payload launch exit velocity and max acceleration, ASL can accommodate virtually any payload size/shape from any platform

- Underwater Launch
 - During SBIR Phase II, SEA CORP designed/built a pressure balanced launcher for a 6.25" ADC countermeasure shape (164 lbs)
 - Exit velocity at ~35 fps at 15' depth
 - Capable of going higher if required



UMV Applications (cont)

- Sonobuoys and other SLC payloads
 - Through a SBIR Phase II with NAVAIR
 - SEA CORP is currently designing/building a modular launcher for the MH-60R helicopter
 - First launch tube built/tested
 - Working on networked 25 tube modular system

Points of Contact

Michael Connelly NUWC Surface Launchers PM 401-832-1333

Dave Lussier SEA CORP Launchers PM dlussier@seacorp.com 401-847-2260 x3330

