### **Underwater Robotics**

Promode R Bandyopadhyay, Ph D
Naval Undersea Warfare Center
Newport, RI

NDIA June 14, 2005

**Sponsors:** 

ONR 342 (Dr. Thomas McKenna) & NUWC ILIR (Mr. Richard Philips)

### **Team**

- Dr. Alberico Menozzi (Control)
- Mr. Henry Leinhos (Control)
- Mr. Jason Gaudette (Control)
- Mr. Albert Fredette (EE)
- Professor Anuradha Annaswamy (MIT: Theo Control)
- Dr. David Beal (Hydro)
- Mr. William Nedderman (Design)
- Dr. Stephen Forsythe (Sonar)
- Mr. Thomas Fulton (MARV & Sonar)
- Walter Boober (Noise)

#### Maneuvering in Nature & in Engineering



 In turning radius, nature is still ahead of engineering although the gap is

marrowing narrowing

Bandyopadhyay

#### Nature & Man Made



May 2005

#### **Nature and Man Made**

- There is convergence in cruise
- But, Nature is still ahead in Maneuvering

 What science principle is behind nature's superiority that engineering has not implemented?

# **High-Lift Principle**



# The Proposed Vehicle





# **Actuator Power Saving Over Cross Tunnel Thrusters**





- For upward translation, 4 foils do the work of 2 CTT @25lbs each
  - Lift-based (12" span): 440W Foils vs. 1078W CTT
  - Lift-based (8" span): 540W Foils vs. 1078W CTT

# NUWC Biorobotic Foils Have the Best Power Saving Performance Over CTT & Nektors



May 2005

# NUWC Foils are more efficient and more scalable over Nektors

Example for 420 N/m^2 Thrust, the hydro power used by 6" x 6" Nektor is: 50% greater compared to NUWC 12" foil 100% greater compared to NUWC 8" foil, and 200% greater compared to NUWC 4" foil



May 2005

## **Swimming in Acoustic Test Facility**



# Low Speed Maneuvering









# Low Speed Maneuvering









# Low Speed Maneuvering







#### **Subneuron: A Robust Orbit Generator**

#### Inferior Olive

$$\frac{dz}{d\tau} = f(z) - w$$

$$\frac{dw}{d\tau} = \varepsilon_{ca} [z - I_{ca} - I_{ext}]$$

$$\frac{dv}{dt} = u - (z - I_{ca}) - I_{Na}$$

$$x = w - w_0$$

$$\omega = \sqrt{\varepsilon_{ca}}$$

$$g(y) = a_0 + a_1 y + y^2$$





Frequency, amplitude, bias, and general shape can be varied through  $a_0$ ,  $a_1$  and  $\omega$ 

#### PCB-analog implementation:





## **Local Autonomy of Actuators**

**Roll & Lift** 





# Sonar: x3 Drop in 10 deg Yaw



#### **Interaural Arrival Times**

Observe different arrival times between left and right ears, but equal arrival times between top and bottom ears





## **Noise**



### **Linear Actuation of Foils**



### **Usefulness**

- Hovering
- Power Efficiency
- Station Keeping
- Docking/Recovery
- Stealth