

Packaged Central Plants

August 4, 2005

Agenda

- Packaged Central Plant Product
 Conchibition/Value Proposition
- Capabilities/Value Proposition
- Application
- Summary

Packaged Plant Product

Engineered Package:

- Single or Multiple Chillers
- Boilers and/or Plate & Frame HX
- Chilled water pumps (N+1)
- Condenser water pumps (N+1)
- Hot Water Pumps (N+1)
- Motor Control Centers
- Controls: DDC or PLC
- Fully Air Conditioned Enclosure
 - Optional "Convertible" versions
- Cooling Tower
- Tower support structure and piping
- Guarantees:
 - Cost (\$/ton)
 - System Efficiency (kW/ton)
 - Completion date (months)

Benefit of Packaging: Contract to Require Performance Liquidated Damages (LD's) for Efficiency, Tons, etc.

Core Design Principles

Highest Energy Efficiency

- Thermodynamic staging
- Low condenser water flow
 - (1.5 gpm/ton = 20°F ΔT)
- Low chilled water flow
 - (1.0 to 1.6 gpm/ton = $15^{\circ}F$ to $24^{\circ}F \Delta T$)
- Variable-primary-flow (ChW)
- Equipment serviceability

Design Principles – "Low-Flow" Design

Reduces initial costs

- Smaller pumps
- Smaller pipe sizes
- Smaller switchgear and electrical equipment

Reduces operating costs

- Less pumping energy
- Lower connected load

Quantitative Advantages

- <u>Cost</u> Typical installed cost savings of \$200-\$300 per ton versus field-erected systems
 - Controlled construction environment
 - Repetitive processes
- <u>Schedule</u> can save up to 50% (6 months) versus typical design/bid/construct

Industrial Quality

- ISO 9001:2000 Certified Manufacturing Processes
- Standard product designs allow continuous improvement
- ✓ B31.1 Piping
- ✓ Seismic Zone IV 115MPH 40 lb/sq ft

Quantitative Advantages

High System Efficiency

Chiller/Pump/Tower Optimization

Equipment Enclosure

- Realize use of building space once reserved for mechanical room(s)
- Compact Footprint
- Standardized O&M service and parts

Chiller–Tower Optimization

^{**}Trane was awarded the 2004 SBIC "Best Sustainable Practice" award, recognizing the Trane Chiller-Tower Optimization chiller plant operating system.** SBIC – Sustainable Buildings Industry Council

Innovation → Efficiency → Savings = ^ Best Value

Qualitative Advantages

Single-source responsibility

- Integration
- One set of submittal, P&ID, PFD documents
- Simplified project execution/management
- Commissioning
 - Controls certification
- Flexibility customizable to fit specific site conditions
 - Various scope options: compatible with TES, BCHP, and Cogeneration
- Portable/Modular/Expandable
 - On-site as missions/needs change
 - Different sites
- <u>Guaranteed</u> and predictable performance

Plant Maintenance and Serviceability

- Dry room for switchgear and controls
- Minimum 5 foot aisle between chillers
- Clearance for compressor removal
- Overhead monorail hoist (pumps)
- Removable end-walls or doors for tube access
- Internal catwalks and ladders
- Cooling tower catwalk & railing

		DCENT	TDAT		NITC
PACK	AGE	D(FN)	ΙΚΑΙ	PLA	NIS-
Project:	2000 Ton Ce	entral Plant			
TAS Proposal Number:	2004-1				TRANE —
Customer Name		lding			
Option 1:	Field Erecte	d 2000 ton plant			
Option 2:	TAS H-Serie	es with 2 x Long b	arrel simple	ex chillers	
I					
Total Installed Tons:	2000				
Planned Full Load:	100%	*Use if redundan			
	2000		Cy exists		
Running Full Load Tons:	2000				
	Ontion	1 (MC Estimate)		Option 2 -	TAS PCP (actual)
Concrete Slab:	Option				26,250
Chillers:		400,000			2,350,000
Cooling Towers:		170,000			included
Cooling Tower Structure:		48,000			included
Pumps:		96,000			included
Piping/Valves/Instrumentation:		370,000			included
Insulation:		148,000			included
Controls:		88,000			included
Chiller Plant Building:		320,000			included
Startup:		37,200			included
Commissioning:		64,000			included
Electrical:		344,000			included
Shipping:		74,000			90,000
Rigging:		56,000			45,000
Water Treatment:		35,000			35,000
Building HVAC:		48,000			included
Refrigerant Monitoring System:		30,000			included
Field Labor:		170,000			130,000
Warranty:		70,000			included
Subcontractor Mark-up		337,230			31,500
General Contractor Mark-up		435,815			406,163
Construction First Cost:		3,341,245		Actual	3,113,913
(\$/ton)		1,671			1,557
Performance Input:		(ESTIMATED)			(ACTUAL)
kW/Ton:		0.85			0.75
Running Load kW:		1,700			1,500
Connect Load kW:		1,700 4,117			1,500
Full Load Hours/Year:					4,117

Net Present Cost Comparison

Packaged Plant Product Benefits

Benefit	Packaged	Conventional	
Energy Efficiency (kW/ton)	.7080	.85-1.0+	
Eliminates Need for Building	Yes	No	
Installed Capital Cost (\$/ton)	950-1500	1600-2200+	
Deployment Schedule (mos.)	6-9	18-24	
Compactness	Yes	No	
Portability	Yes	No	
Modular Concept	Yes	No	
Constructability	Simple	Complex	

Packaged Central Plant Exterior

Innovation → Efficiency → Savings = ^ Best Value

Packaged Central Plant Interior

Integrated Switchgear

Electrical/Control Dry Room separate from Chillers and Pumps

Innovation → Efficiency → Savings = ^ Best Value

Pumps and Headers

_///

Accessibility

Typical Package Installation

Installation Statistics:

- 7-Man Crew
- 4 x 10 hour Days
- 4 Days per week

Plant Installed in 16 Working Days

Project Information:

- 1,200 tons Installed Now (2 x 600TR Centrifugal Chillers)
- Additional Expansion Planned (2 x Centrifugal Chillers)
- Expansion to be inside shown package and will require less than 10 days to install and require zero plant outage

Receipt, Unloading, and Setting of Modules

Cooling Tower Structure & Piping Arrive

Innovation → Efficiency → Savings = ^ Best Value

Internal Package & Cooling Tower Structure Major Assembly Complete

Cooling Tower scheduled for Just-in-Time Delivery and Placement

Innovation → Efficiency → Savings = ^ Best Value

Cooling Tower Motors & Instruments Wired, Piping Near Completion

1200 Ton Facility Installed Bossier City, Louisiana

29 calendar days to install

24 weeks from order to chilled water

1200 Tons – Rincon, California

Screening Options

Screening Options

Screening Options

400 Tons - Stafford, Texas

•Water-Cooled Screw Compressor Chillers

•Replaced Air-Cooled Chiller system

Delivery to Startup:9 Days

400 Ton Packaged Plant

400 Ton Packaged Plant

5000 Tons – Houston, Texas

✓ 5,000 Ton Plant
 ✓ Located over an operating Loading Dock
 ✓ 0.73 kW/ton Guarantee
 ✓ 2 x 2.5 MW Emergency Generators

5000 Tons – Houston, Texas

Innovation → Efficiency → Savings = ^ Best Value

5000 Ton Packaged Plant – Pompano, Florida

5000 Ton Packaged Plant – Pompano, Florida

5000 Ton Packaged Plant – Pompano, Florida

Data Center Application

- 3 ea. Centrifugal Chillers (3000 Tons) (55/71 ChW)
- 2 ea. Helical-Rotary Chillers (500 Tons) (40/58 ChW)

Packaged Plant – Mission Critical

Packaged Plant – Mission Critical

Packaged Plant – Mission Critical

Jumeirah Beach Residence (www.jbr.ae)

Innovation → Eff

- 60,000 Tons (12 ea. 5,000 Ton Plants)
- 22 million square feet
- 36 Residential Towers
- 4 Hotel Towers

Jumeirah Beach Residence

Ammonia Packages

Summary

Reduced first cost High-efficiency plant Lowest Life-cycle cost 🗸 Reliability Quality Reduced footprint Minimal site interference = Maximum Safety Shortened construction cycle Guaranteed performance

Best Value

Savings =

Innovation → Efficiency

Additional Information

Trey Austin

TAS Packaged Central Plants 4300 Dixie Drive Houston, Texas 77021 Tel: 713-877-8700 E-mail: taustin@tas.com Website: www.tas.com

USACE Engineering and Construction Bulletin #2004-16

