

US Army Corps of Engineers Engineer Research and Development Center Vicksburg, Mississippi

2005 Tri-Service Infrastructure Systems Conference & Exhibition August 1-4, 2005

Rubblization of Airfield Concrete Pavements

By

Eileen M. Vélez-Vega

Research Civil Engineer Airfields and Pavements Branch

Overview

Introduction

- FY 03-04 AFCESA Research
- FY 05 AMC Research

FY 03-05 Research Approach

- Phase 1
 - Equipment & Procedure
- Phase 2
 - Highway and Airfield Rubblization Evaluations
 - Cost Analysis
 - Grand Forks Air Force Base Study
- GF AFB Guidelines and Specifications
 - Runway Reconstruction Project
- Results and Conclusions
- Future Research Studies
- Questions

Rubblization

- <u>Main Objective:</u>
 - Develop a design procedure and criteria for the design of asphalt overlays over rubblized, and crack and seat PCC pavements.
- Project History:
 - FY 03-04 AFCESA: Rubblization Design Procedure
 - FY 05 AMC: Grand Forks AFB Runway Reconstruction Project
- Rubblization...
 - ... is a relatively "new" rigid pavement rehabilitation technique.
 - ...eliminates existing slab action by breaking the PCC pavement into small particles ranging from:
 - sand size to 75 mm (3 in) at the surface,
 - 150 to 230 mm (6-9 in) on the top half,
 - 305 to 380 mm (12-15 in) at the bottom half of the PCC layer.
- <u>**Crack and Seat**</u> has almost been replaced with Rubblization due to the significant advantages that it proves to have in the rehabilitation of PCC pavements.

Why Rubblization?

Pavement Distresses

- Reflective Cracking
- Severe Joint Deterioration
- Slab Settlement
- Excessive Patching
- "Pop-outs", etc.

load-bearing capacity of rubble

into base

Rubblization Equipment *

Current U.S. major contractors:

- Resonant Machines Inc. (RMI)
 - Resonant Breaker, RB-500
 - Low Amplitude
 - » 12 to 20 mm (1/2-3/4 in)
 - High Frequency Hammer
 - » 44-47 Hz

- Antigo Construction, Inc.
 - Guillotine Type Breaker
 - 5,440 kg (12,000 lb), 2.4 m (8 ft) hammer
 - Multi-Head Badger Breaker[®]
 - 16-450 kg (1,000 lb) hammers
 - 4 m (13 ft) wide

Particle Size Distribution

 $h_{rub} = maximum depth of the slab$

 $h_p = pavement thickness$

RMI Particle Size Specifications:

• Particle Size Range:

Sand size to 6 inches not greater than 1.25 times h_{rub}

• Majority of the pieces:

Sand size to 0.75 times h_{rub}

For reinforced PCC:

Larger pieces are accepted and reduced to the best possible size.

Antigo Construction Inc. Particle Size Specifications:

<u>Size Range</u>:

Sand size to 3 inches or less in the top half of the slab.

9 inches or less in the bottom half of the slab.

For reinforced PCC:

Similar to the RMI Specifications

Highway Rubblization Projects

- I-10 Louisiana Rehabilitation Project
 - 11.0 km (7-mi) pavement rubblization
 - Contractor: Resonant Machines, Inc.
 - Pavement Structure:
 - 250 mm (10 in) AC O/L
 - 230 mm (9 in) Rubblized PCC
 - Subgrade: Sandy Soil

- I-65 Alabama Rehabilitation Project
 - Contractor: Antigo Construction, Inc.
 - Pavement Structure:
 - 280 mm (11 in) AC O/L
 - 250 mm (10 in) Rubblized PCC
 - Subgrade unknown
 - Test Pits required every 305 m (1000 ft)

Airfield Rubblization Projects

Hunter Army Airfield, Savannah, GA

- East Taxiway Rubblized in 2003
- Equipment (Antigo Construction Inc.):
 - Guillotine type breaker
 - Multi-Head Badger Breaker
- Pavement Structure
 - 250 mm (10 in) AC O/L
 - 11,000 m² (13,167 yd²) of 200 mm (8 in) Rubblized PCC
 - Subgrade: Poorly Graded Sand

Selfridge Air National Guard Base, MI

- Runway Reconstruction, Summer 2002
- Equipment (Antigo Construction Inc.):
 - Guillotine type breaker
 - Multi-Head Badger Breaker
- Pavement Structure
 - 180 mm (7 in) AC O/L
 - 115 mm (4.5 in) Crushed Concrete Base Course (leveling course)
 - Rubblized PCC thicknesses varied from 330 to 530 mm (13-21 in)
 - Subgrade: Silty Sand soils

Selfridge ANG Base Rubblization Project

*

Rubblization Evaluation Results

- Pavement Structural Evaluation
 - Collect and analyze HWD data
 - Maximum load: 114,400 kg (52,000 lb)
 - Data analyzed in the PCASE program
 - Back-calculate Modulus
 values using WESDEF
- Airfield Evaluation Results
 - Hunter Army Airfield
 - Average Rubblized PCC Modulus values:
 - 4,070 MPa (590 ksi)
 - Selfridge ANG Base
 - 530 mm (21 in) Rubblized PCC Modulus values:
 - 8,700 MPa (1,260 ksi)

• Additional FWD data:

- Niagara Falls Joint Air Reserve Station
 - Data provided by AFCESA
 - Runway Pavement Structure:
 - 130 mm (5.0) AC O/L
 - 240 mm (9 in) Rubblized PCC
 - Subgrade: Silty Gravelly Sand

- Average Rubblized PCC Modulus values:
 - 700 to 1,080 MPa (100-157 ksi)
 - Variations:
 - High Water Table
 - Shallow Depth to Bedrock

Heavy Weight Deflectometer

Grand Forks AFB Cost Analysis

Based on the rehabilitation of a 480 mm (19 in) PCC pavement:

- Grand Forks Air Force Base pavement design:
 - Air Force Medium Traffic
 - 400 passes B-52
 - 400,000 passes C-17
 - 100,000 passes F-15E
- Costs:
 - Rubblization:
 - \$1.15 \$5.50 per square meter (\$0.95-\$4.50 per square yard)
 - Break & Remove:
 - \$3.95 \$7.50 per square meter (\$3.30 -\$6.50 per square yard)
 - Rubblization cost is approximately 40% of the cost of break and removal.

Grand Forks AFB Runway Reconstruction Project

Monitor Ongoing Rehabilitation Project in Grand Forks Air Force Base, North Dakota

- Interesting Facts:
 - 250,000 sq. yards of PCC Rubblization
 - Average PCC layer thickness = 16-19 inches
 - Rubblization contract
 - Replaced RMI for Antigo Construction Inc.
 - New pavement will consist of AC and PCC overlays
- Measure pavement response (HWD/FWD):
 - Before rubblization
 - After rubblization, before seating
 - After seating/ before AC/PCC overlay
 - After AC/PCC Overlay
- Material characterization
 - Particle size distribution
 - Test pit particle sampling
- Verify existing Rubblization guidelines and specifications

GF AFB Rub. Phase 1

Grand Forks AFB Rubblization Process

• GF AFB Phase I Runway Rubblization: 14-inch PCC pavement

Results and Conclusions

- Without proper guidance rubblization may not be considered a practical solution and there is substantial risk of premature failures.
- Overall cost of rubblization represents a 10% cost savings.
- Important Considerations:
 - Concrete slab
 - Thickness
 - Reinforcement type (if any)
 - Underground utilities
 - Base and Subgrade Strength
 - Soil moisture
 - Type of material
 - Subgrade Modulus >15,000 psi.
 - Proper drainage system
- The engineer may require more roller passes to achieve proper compaction. Over-compaction will break particle interlock.

Proper drainage is required

Test Pits – Verify Cracked Pattern

Future Research Studies

HVS-A

- FAA Pavement Test Facility, New Jersey
 - Load/Rolling tests
 - HVS
 - Aircraft loading
- Monitor Long-term Rubblization Projects
 - Existing condition evaluations
 - Non destructive testing:
 - HWD/FWD
 - Evaluate "old" crack & seat projects
 - Aberdeen Proving Grounds
 - Traffic responses
 - 5 (+) year term
 - HVS-A
 - Full-Scale Accelerated Pavement Testing
 - Other projects:
 - USAF Elimination of Alkali-silica Reaction (ASR)
 - Travis AFB, California

- This past and ongoing research is sponsored by the Air Force Civil Engineering Support Agency (AFCESA) and conducted by the Geotechnical and Structures Laboratory in Vicksburg, Mississippi.
- For additional information on rubblization specifications:
 - Asphalt Institute Website, <u>www.asphaltinstitute.org</u>
 - Engineering Brief No.66 Rubblized Portland Cement Concrete Base Course, February 13, 2004 Federal Aviation Administration
- US Army Corps of Engineers Rubblization Specifications are currently under development. For more information please contact Eileen M. Vélez-Vega at <u>Eileen.M.Velez-Vega@erdc.usace.army.mil</u>

QUESTIONS?

Eileen M. Vélez-Vega

US Army Research and Development Center Geotechnical and Structures Laboratory Airfields and Pavements Branch

Telephone number: 601-634-2717

Email: Eileen.m.velez-vega@erdc.usace.army.mil

