Curing Practices for Modern Concrete Production

Toy Poole
U.S. Army Corps of Engineers
August 2005

US Army Corps of Engineers®

Engineer Research and Development Center

Problems with Curing?

US Army Corps of Engineers®

Curing Practices - Need for Revisions??

- Review major points of current practice
- Discuss effects of newer concrete practice

Purpose of Curing

- Conserve water
- Maintain favorable temperatures

Current Practice

- Protect fresh concrete
- Apply final curing
 - After finishing
 - After sheen gone
- Duration of Curing
- Curing materials specs

Protect Fresh Concrete

- Critical evap rate
 0.5, 1.0 kg/m²/h
- Based on "old time" bleeding rates

Low w/c Concrete

- Low w/c concretes
 - Evap rates <0.5 kg/m²/h
- Action: More care to reduce drying
- Cool concrete
- Evap reducers
 - Misting

US Army Corps of Engineers®

Engineer Research and Development Center

Action

- Action: reduce evaporation
- Cool concrete

Current Practice

- Protect fresh concrete
- Apply final curing
 - After finishing
 - After sheen gone
- Duration of Curing
- Curing materials specs

Apply Final Finishing

- After finishing
- After sheen disappears

Problem

- Pavements
 - Little bleed
 - Finishing ~ placing
- Curing compounds
 - Applied soon after placing
 - May not perform

Uniformity of Application

US Army Corps of Engineers®

Early Application of Curing Compound

US Army Corps of Engineers®

Early Application of Water, Mats

- If before TOS
 - Erosion
 - Marring

Resolution

- Delay application???!!!
- Live with consequences

Current Practice

- Protect fresh concrete
- Apply final curing
 - After finishing
 - After sheen gone
- Duration of Curing
- Curing materials specs

Duration of Curing

- Corps of Engineers prescriptive
 - Based on cement type
 - Presence of pozzolan
- State DoT's prescriptive
 - − Based on time − 3 − 10 days
- ACI mixed spec
 - Time

– % f'c

Emerging Technologies

- Maturity
 - ASTM C 1074 based
- NDT
 - ultrasonic

Current Practice

- Protect fresh concrete
- Apply final curing
 - After finishing
 - After sheen gone
- Duration of Curing
- Curing materials specs

Curing Materials – Curing Compounds

- Water Retention
 - CE: 0.31 kg/m² @ 7 days
 - Old Bu Rec: 0.86 kg/m² @ 7 days
 - ASTM:
 - -C 309: 0.55 kg/m² @ 3 days
 - C 1315: 0.40 kg/m² @ 3 days
 - State DoT's: <0.3 kg/m² @ 3 days

Water Retention (?, Loss?) Requirements

- True value??
 - Some early work 0.7 kg/m²
 - Other work 1.0 kg/m² in several days
- Major problems with testing
 - Often not done
 - Precision of TM (C 156)
 - $-d2s = 0.20 \text{ kg/m}^2$

Drying Time Problems Low VOC Materials

US Army Corps of Engineers®

Evaporation Reducers

- No Specs
- No TM's
- ASTM C 9.22

The End!

