USDA Forest Service

San Dimas Technology and Development Center

Unpaved Road Stabilization with Chlorides

Unpaved Road Stabilization with Chlorides

3 Year Project, FY 2002 - 2004
Completion Date: 9/2004
The goal of this project is to evaluate different chloride products, applied at different application rates, using different construction methods as stabilizing agents for aggregate surfaced roads.

Project Details

- **12** Project Sites
 - Each project site has 4 to 12 test sections, 800 feet long
 - Minimum of 2" of crushed aggregate surfacing
- 39 Treated Sections
 - 4 chloride products
 - Liquid Magnesium Chloride & Calcium Chloride
 - Solid Calcium Chloride, flakes and pellets
 - ◆ 2 chloride application rates, 1.5% and 2.0%
 - ◆ 2 different types of mixing, blade and tilling
 - Chloride mixed with the top 2" of surfacing
- 40 Untreated Sections
 - ♦ 18 normally bladed and 22 untreated control sections

Project Site Locations

Oregon 4 Projects
Washington 1 Projects
Idaho 4 Projects
Montana 3 Projects

Map of Project Area

Project Construction

Construction on all 12 projects was completed by 7/15/2003
 Construction and materials cost (cost per mile for 22 foot wide road)
 \$8000 to \$10000 per mile

Project Construction Sequence

Road Preparation
Chloride Application
Mixing
Quality Assurance
Compaction
Chloride Surface Application

Road Preparation - Watering

Road Preparation - Blading and Shaping

Chloride Application - Dry Product

Chloride Application - Liquid Product

Tiller Mixing Dry Chloride

Blade Mixing Dry Chloride

Tiller Mixing - Liquid Chloride

Blade Mixing Liquid Chloride

Quality Assurance - Tiller Mixing Depth Checks

Quality Assurance - Windrow Sizing During Blade Mixing

Quality Assurance - Windrow Measurement & Mixing Consistency

Compaction - Watering

Compaction with Water Truck

Chloride Surface Application

Test Section Photos

Test Section Photos

Monitoring Items

- Performance Dust, Loose Aggregate, Washboards, Rutting, Potholes and Speed
- Weather Temperature, Humidity, Rainfall
- Traffic
- Testing of Aggregate & Chlorides
- Vegetation Damage, Stream Water Contamination, Migration in Soil
- Costs Construction, Maintenance, User Costs, Aggregate Loss

Performance Rating System

- US Army Corps of Engineers "Rating Unsurfaced Roads"
- Measurement intensive process for 100 foot long segment of each test section
- Measured defects are converted to deducts, which are subtracted from 100 to get Condition Index
- Some system modifications made to improve process

Loose Aggregate & Washboards – Untreated Section

Loose Aggregate – Treated Section

Rutting

Potholes

Performance Curves

Tucannon River Road Surfacing Performance 2003-2004

General Observations

- All 40 untreated sections needed blading 95% of the time during the first season
- 13 of 39 treated sections needed blading once during the first two seasons
- Dry chloride has advantages over liquid chloride
- Tiller mixing has advantages over blade mixing
- Projects using dry chloride that are tiller mixed had the lowest construction cost

Report - Performance

- Treated segments
 - Needed blading after 22000 vehicles (About 2 to 3 years)
 - Very few defects potholes, loose aggregate
- Untreated segments
 - Needed blading after 3000 vehicles (About 1 month)
 - Numerous defects most of the time

Report - Environmental Impacts (Before and After Samples)

- Vegetation 200 samples on 4 projects, no significant impacts
- Migration in Soil 96 samples on 12 projects, no significant impacts
- Stream Water Contamination 8 composite samples on one project, no increase in chloride levels

Final Report - Costs

- ◆ Construction Costs: \$8,000 to \$10,000 per mile
 - Costs are recovered by savings during first 3 years
 - Annual spring blading with water truck and roller extends effective life to 10 years.
- Maintenance Savings: \$500/mile/year
- User Costs Savings: \$900/mile/year
- Aggregate Loss Savings: \$1900/mile/year

Report - Intangible Benefits

Sedimentation - significantly reduced
Aggregate Resource - conserved
Road User Safety - improved
Dust Health Hazard - significantly reduced
Public Relations - improved

Michael R. Mitchell, PE

909-599-1267 ext 246 US Forest Service San Dimas Technology and Development Center mrmitchell@fs.fed.us