

of Engineers Louisville District

ROLLER COMPACTED CONCRETE FOR McALPINE LOCK REPLACEMENT: BY DAVID E. KIEFER P.E.

CONSTRUCTION OF 360' 2-STAGE LOCK, 1870

CONSTRUCTION OF 600' LOCK, 1900

CONSTRUCTION OF EXISTING 1200' LOCK, 1960

US Army Corps of Engineers Louisville District Army Corps

*360' lock deactivated due to miter gate failure

- *600' lock used only as back-up (slow and unreliable)
- *New 1200' lock will add capacity and reliability
- *New lock will be located south of existing 1200' lock

NEW 1200' LOCK

US Army Corps of Engineers Louisville District

Downstream Cell Construction

Upstream Cofferdam Cells

Demolition and Foundation Excavation

ENGINEERING AND DESIGN OF NEW LOCK

*Evaluate Alternative/Innovative Emptying and Filling Systems
*Evaluate Alternative Lock Wall Designs
*Perform Hydraulic Model Studies

*Select Best Alternative for Hydraulic and Wall Construction Considerations.

CONVENTIONAL INTAKE SYSTEM US Army Corps of Engineers Louisville District W/LOCK FLOOR CULVERTS

NEW 1200' LOCK CROSS SECTION

LOCK WALL OPTIONS

- * Thin-wall design with tie-back anchors
- * Reinforced Earth type wall
- * Thin-wall design with deadmen
- * Grouted Stone Fill
- * Roller Compacted Concrete (RCC) Selected as Preferred Option

ROLLER COMPACTED CONCRETE

- * ACI 207; Concrete of no-slump consistency in its unhardened state that is transported, placed, and compacted using earth and rockfill construction equipment.
- * A well graded aggregate mixture with a little bit of cement, fly ash and water thrown in for good measure.
- * Looks like a pile of wet rock.
- * Work it like dirt/soil, core it like concrete.

RCC CONSTRUCTION

US Army Corps of Engineers Louisville District

MCALPINE St LOCK CONSTRUCTION

* 150,000 cubic yards rock excavation

* 400,000 cubic yards concrete

* Access Bridge: 42 drilled shafts,6' diameter, 45' to 100' long

* 165,000 cubic yards backfill

* Traylor Bros, Granite, Massman (TGM)

* Crushed Limestone Coarse Aggregate,2" NMSA

* Natural, River Dredged Fine Aggregate

* Class F Fly Ash

* Type II, max 80 cal/g cement

BATCH PLANT

- Twin 6-yard Besser compulsory mixers
- ASTM #3 (2-inch) and #57 (1-inch) coarse aggregate.
- Coarse aggregate wet belt and liquid nitrogen for temperature control.
- 70 Degree (Mass) and 80 Degree (RCC) temperature requirements.

BATCH PLANT

BATCH PLANT

WET-CHILL BELT

LIQUID NITROGEN

US Army Corps of Engineers Louisville District

- Constructed to demonstrate suitability of Contractor's equipment, methods and personnel.
- 50' long by 30' wide at top, (5) 1-foot lifts.
- Test section saw cut and inspected after placement for evaluation of RCC placement procedures.

McALPINE RCC CONSTRUCTION

RCC and conventional concrete transported from batch plant using Maxon Agitor trucks.

- •Rotec creter-crane primarily used for concrete placement.
- •Buckets and creter-crane used for RCC facing concrete
- •Large and small rollers used for compaction

Ϊ,Ψ.Ĭ

RCC CONSTRUCTION

US Army Corps of Engineers Louisville District

RCC CONSTRUCTION

US Army Corps of Engineers Louisville District

FACING CONCRETE

BEDDING MORTAR

CONSOLIDATION OF INTERFACE

CONSOLIDATION OF INTERFACE

PRIMARY ROLLER

SECONDARY ROLLER

US Army Corps of Engineers Louisville District

SEGREGATION

QC – NUCLEAR DENSITY TESTING

INSERTING MONOLITH JOINT

SLOPING BACKFACE

LOCK WALL FACE

US Army Corps of Engineers Louisville District

MIX PROPORTIONS

	<u>MASS</u>	<u>RCC</u>
Cement	259	120
Fly Ash	187	156
Coarse Agg.	2350	2440
Fine Agg.	1070	1132
Water	187	174

JULY 2005

QUESTIONS ???