Tri Services ISC - Geotechnical Track 6 Wednesday, August 3, 2005 Room 227

State of the Art in Grouting

Dams on Solution Susceptible or Fractured Rock Foundations

Arthur H. Walz, Jr., P.E.

Track 6

- Overview of USACE dams on solution susceptible or fractured rock foundations
- Special drilling and grouting techniques for remedial work in embankment dams
- Composite grouting and cutoff wall solutions
- State of the art in grout mixes
- State of the art computer control, monitoring and analysis of grouting
- Quantitatively engineered grout curtains

Solution Susceptible Rock Foundation

Indiana Limestone

Solution Susceptible Rock Foundation

Indiana Limestone

Solution Susceptible Rock Foundation

Boone Formation Beaver Dam, AK

Fractured Rock Foundation

Fractured Rock Foundation

Western Maryland

Rock Foundation at Clearwater Dam

Fractured Rock Foundation

Basic Technical Requirements for an Embankment Dam

- Must have sufficient spillway and outlet capacity as well as adequate freeboard to prevent over topping by the reservoir
- Must be stable under all loading conditions
- Dam and "foundation" must be sufficiently watertight and have adequate seepage control for safe operation

Causes of Dam Failures in the United States Embankment Dams *

	Cause	1955	Current
1.	Inadequate spillway capacity	30%	40%
2.	Seepage/piping	25%	37%
3.	slides	15%	<mark>6%</mark>
4.	Conduit leakage	13% -	7
5.	Slope protection	5%	<mark>→</mark> 17%
6.	Unknown	12% -	

* Source – National Inspection of Dams Program, Corps of Engineers survey and Bureau of Reclamation survey

Corps of Engineers Dams 569 Total dams (2000)

Corps of Engineers Embankment Dams by Hazard Classification & Spillway Operation

* Flood control loading in feet of head is greatest for ungated dams

Schematic of an Ungated Flood Control Dam

foundation

41 Of the 243 have experienced spillway flow

Uplift in Rock and Seepage

Reservoir at 35% storage capacity

Summary of 1976 HQ Survey

MSC	Solution	Fractured	Both	MSC	Solution	Fractured	Both
LRD				SAD			
LRL	2			SAJ	1		
LRN	5			SAM	1	1	
LRB		1					
				SPD			
NAD				SPA	1		
NAB			1	SPK	1	1	
NAO	1						
				SWD			
MVD				SWF	6		
MVK	1			SWL	5		
MVR	1			SWT	4		1
MVS	1		1				
NWD							
NWK	5		1				
NOW			3		Solution	Fractured	Both
NWW		1		USACE Total	35	4	7

Some Recent Corps Experiences with Existing Dams That Required or will Require Modification

- Hartwell Dike, SC cutoff wall
- Beaver Dam, AK secant pile cutoff
- Patoka Dam, IN grouting
- Mississineau Dam, IN grouting and then panel wall
- Walter F. George, GA grouting with panel wall
- Clearwater Dam, AK emergency grouting then

permanent grouting and then cutoff wall

 Wolf Creek, TN – report with recommendations being submitted to headquarters

Considerations in Selecting the Type of Cutoff for Seepage Control

- Exploration and investigations
- Site characterization
- Physical properties of the fractured or solution susceptible rock foundation
- Establishing the depth and length of cutoff
- Contracting procedure

IFB, RFP and Best Value

Conventional Grouting

Dipstick measurements

Mechanical gages and manual monitoring

Time consuming manually prepared charts

1. Drilling and grouting techniques

2. State of the art Grout mixes

Neat Cement

Balanced Stabilized

2. State of the art Grout mixes

Computer controlled batch plant

3. Composite grouting and cutoff walls

4. State of the art computer control, monitoring and analysis of grouting

5. Quantitatively engineered grout curtains

- Evaluation of geologic conditions
- Detailed site characterization
- Design of grout curtains as an intergral part of the project to achieve specific results
- Best value contracting

Establishing the initial or remedial seepage cutoff for a water resources project can be difficult, expensive and requires monitoring and future evaluation

Recent advances in grouting technology, materials, practices and procedures have made multiple line grouting a reliable and cost effective method to control seepage or the flow of groundwater

Critical Information for Flood Control Operation of Dams

- Inflow predictions
- Projected reservoir levels
- Corresponding storage
- Predicted performance of the dam and structures
- Threshold for changes in monitoring program
- Threshold for potential operational changes due to structural performance
- Draw down capability
 - with full bank discharge capacity

with full discharge