Contact Information

- Kevin Pavlik
- 402-221-4327
- USACE
- kevin.l.pavlik@usace.army.mil

US Army Corps of Engineers Omaha District

Innovative Design Concepts Incorporated into a Landfill Closure and Reuse Design Portsmouth Naval Shipyard, Kittery, Maine

> U.S. Army Corps of Engineers, Omaha District Dave Ray Kevin Pavlik

Presentation Outline

- <u>Background</u>
- Pre-Design Requirements/Investigation
- Design
- Shoreline Protection
- Landfill Gas
- Final Reuse
- Questions

Project Team

		Naval Facilities Eng Engineering Field	ineering Command Activity NorthEast		
	US EPA Region 1 Maine DEP Restoration Advisory Board NOAA, USFWS, Coastal Zone Mgmt		Portsmouth Naval Shipyard		
Tetra Tech NUS		Army Corps of Engineers Omaha and New England Districts EFANE Landscape Architect		Foster Wheeler Environmental Corp.	

Jamaica Island

Installation Location

Pre-Jamaica Island Landfill

Pre-Remedy Uses/Pre-Excavation

Design Challenges

• Final Reuse

- Surface slopes to support recreation areas
- Internal drainage slopes to meet regulatory requirements
- Minimize material export and import
 - Use maintenance dredge spoils below cover
 - Saw tooth internal drainage layer
- Minimize settlement
 - Preload
- Tide varies 10 feet

Regulatory Concerns

• 2% Minimum Surface Slope

- EPA 3%, MEDEP 5%
- Settlement
- Cap Cross Section
- Soil Gas Management
- Sea Level Rise
- Wetland Creation
- Aesthetics (View from the river and shore)

Design Goals

- Protect the Environment
 - Implement ROD
 - Meet Regulatory Requirements
- Reuse
 - Create Wetlands and Incorporate Maintenance Dredge Materials
 - Incorporate Recreation and Parking
 - Relocate crane test pad
- Cost
 - Minimize Construction and Long Term O & M
- Minimize Impacts to Base Operations
- Complete in Two Phases
 - Time and Seasonal Constraints

Innovative Features

- CPT for waste & subsurface characterization
- Wetland creation
- Coastal tie-in
- Use of geotextile in LFG collection layer
- Maintenance dredge spoils reuse
- Saw tooth design of internal drainage layer
- Final reuse

Presentation Outline

- Background
- Pre-Design Requirements/Investigation
- Design
- Shoreline Protection
- Landfill Gas
- Final Reuse
- Questions

Pre-Design Requirements

- Site Topographic Survey
 - Aerial photography
 - Hydrographic (Clark Cove and Jamaica Cove)
 - Land survey to "ground truth" and locate utilities
- Cone Penetration Testing (CPT)
 - Vertical and areal extent of waste
 - Characterize layers (waste and soils; strength, consolidation)
- Borings
 - Undisturbed samples for Lab Testing: strength, consolidation (rate and magnitude), density, classification.
 - Standard Penetration Tests (SPT) to corroborate CPT
 - Bedrock competency (Rock Quality Designation, RQD)

Pre-Design Requirements

- Test Pits
 - Lateral and vertical extent of waste at undefined edges
- Landfill Gas Survey
 - Depth, location, and production rate (flux) of CH_4 and CO_2
- Piezometers
 - Determine extent of tidally influenced groundwater
 - Slope stability affected by excess pore pressures, shallow and deep piezometers installed to measure
 - Forced movement of air and landfill gas a concern
- Surface Soil Samples
 - Geotechnical testing for reuse in low permeability layer

Cone Penetrometer

Typical Geologic Cross Section

VERTICAL SCALE IS EXAGGERATED T TIMES THE HORIZONTAL SCALE

Presentation Outline

- Background
- Pre-Design Requirements/Investigation
- <u>Design</u>
- Shoreline Protection
- Landfill Gas
- Final Reuse
- Questions

- Settlement Analysis
 - Key to reuse and final slope (2% vs 5%)
 - Non-municipal type waste therefore traditional geotechnical settlement analysis was used
 - Consolidation rates:
 - Lab results for clay, CPT and literature for waste
 - 34 points
 - Stratigraphy based on CPT/Borings
 - Loading based on final grading plan (depth of fill)
 - Preload w/excavated material to reduce post construction settlement
 - Results

Typical Internal Drainage System Detail

Internal Drainage Layer Plan

Typical Cross Sections

Post-Settlement Slope Analysis

• Slope Stability

- Geometry determined by geology, topography, and grading plan
 - Potential failure surfaces apparent from geometry and strength of layers
- Loading
 - Weight of added material for landfill cover
 - Seismic forces
 - Rapid drawdown of water.
 - Tidal fluctuation similar rapid drawdown of liquid impoundment
- Strength parameters from CPT, SPT, lab data, literature
 - Unconsolidated Undrained controls short term strength
 - Consolidated Drained controls long term strength

• Slope Stability

- Piezometric Conditions
 - Modeled as worst case, no dissipation of excess pore pressure within clay.
- Factors of Safety (FS)
 - RCRA Subtitle C
 - Short term static minimum FS = 1.3
 - Long term static minimum FS = 1.5
 - Seismic minimum FS = 1.0
 - MEDEP
 - Seismic minimum FS = 1.0 for 10% exceedance in 250 years
 - Seismic minimum FS = 1.1 for 10% exceedance in 50 years
- Results
 - Minimum Factors of Safety met for all conditions

• Slope Stability Analysis Methods

- Global Stability
 - UTEXAS4 (USACE and U of Texas)
 - Searches for weakest possible failure surface
 - Multiple analysis methods available within program
 - WESHAKE5 (U of Cal-Berkley) used to determine the maximum horizontal acceleration
- Seismic/Liquefaction potential determined not a problem

Seismic Slope Stability Analysis

• Slope Stability

- Veneer Stability
 - Saturation of cover soil due to capacity of drainage layer
 - Analysis supports use of bi-planar vs tri-planar (except on side-slopes)
 - Interface friction
 - Slope geometry
 - Method of analysis
 - Geosynthetic Research Institute GRI Report No. 18, "Cover Soil Slope Stability Involving Geosynthetic Interfaces
 - Geosynthetic Research Institute GRI Report No. 19, "Design of Drainage Systems Over Geosynthetically Lined Slopes

• Slope Stability

- Veneer Stability (cont.)
 - Rate of precipitation
 - Soil layers; density, strength, permeability
 - Drainage layer transmissivity
 - Size drainage layer to minimize saturation of cover soil
 - Interface friction values
 - Textured geomembrane has higher friction value
 - Add geotextile to surface of drainage layer to increase friction
 - Transmissivity vs length of drainage path
 - Factors of safety
 - Static, minimum FS = 1.5
 - Seismic, minimum FS = 1.0

Presentation Outline

- Background
- Pre-Design Requirements/Investigation
- Design
- <u>Shoreline Protection</u>
- Landfill Gas
- Final Reuse
- Questions

Typical Shoreline Protection Section

Typical Culvert Profile

SCALE. 1 NCH-5 FEET

Shoreline Protection

Turbidity Curtain

Turbidity Curtain

Shoreline Protection and Geomembrane Termination

Presentation Outline

- Background
- Pre-Design Requirements/Investigation
- Design
- Shoreline Protection
- Landfill Gas
- Final Reuse
- Questions

LFG Collection and Venting

- Prevent build-up and lateral migration of methane
 - Build-up beneath geomembrane can cause slope instability
- Passive vs Active collection system
 - Age and composition of waste, climate and moisture condition of waste
- Passive blanket collection system
 - Sized for measured methane production rate and calculated tidally induced gas movement
 - Geotextile used with collector strips and vents spaced based on transmissivity of layer. Maximum gas pressure determined by slope stability (thickness of overburden vs gas pressure)

LFG Collection Layer

Gas Vent Locations (Internal Drainage Layer)

Gas Vent Locations (Final Reuse)

Typical Diffuser Flap Vent Detail

Presentation Outline

- Background
- Pre-Design Requirements/Investigation
- Design
- Shoreline Protection
- Landfill Gas
- Final Reuse
- Questions

Typical Vegetated Landfill Section Variations

Typical Pavement Sections

Light Pole Locations

Ball Field Lighting Details

Parking Lot Lighting Foundation Details

NO SCALE

Running Track, Ball Field and Lights

Asphalt Parking Lot, Lights, and Jamaica Cove Wetland

Aerial View Before Construction

Aerial View of Completed JILF

Presentation Outline

- Background
- Pre-Design Requirements/Investigation
- Design
- Shoreline Protection
- Landfill Gas
- Final Reuse
- <u>Questions</u>