DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES
SEABROOK, NEW HAMPSHIRE

Siamac Vaghar, PE
Geotechnical Engineer

and

Francis Fung, PE
Structural Engineer

US Army Corps of Engineers, Concord, Massachusetts
Authority: Section 227 of the Water Resources and Development Act of 1996 (WRDA 96); Administered by ERDC

- Research & Development: Advance the state of the art of coastal erosion control technology
- Encourage and achieve the development of innovative solutions to the erosion control challenge
- Communicate findings to the public, state, and local coastal managers
Design and construction of anchored bulkheads with synthetic sheet piles, Seabrook, New Hampshire

Hampton-Seabrook Harbor, adjacent to the mouth of the Blackwater River, located in coastal New Hampshire, USA
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE

Objectives:
- Replace lost intertidal sands
- Reduce sand migration into the Harbor
- Prevent shoreline erosion

Constraints
- Innovative Components
- Ability to remove
- Dredging window of time, November through March
- Cost
- 50-year design life

Solutions:
- Install cofferdams across the eroded channel using synthetic sheeting
- Dredge sand from the shoaled areas of the River to encourage flow
- Use the dredged sand to fill between the cofferdams to restore the sand flats
Subsurface Conditions

- Medium dense fine sand
- Field SPT = 20
- No obstructions
• Synthetic Sheeting

 – Vinyl: Made of virgin or recycled plastic or combination (recycled, with virgin veneer)
 • High tensile strength
 • Less brittle
 • 10+ years of case histories of use

 – Fiber Reinforced Polymer (Fiberglass) Glass fibers embedded in resin matrix such as polyester, polyurethane, or vinyl ester.
 • High flexural strength
 • More brittle
 • Limited number of projects
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Vinyl</th>
<th>FRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength (psi)</td>
<td>ASTM D638</td>
<td>6,300</td>
<td>60,000</td>
</tr>
<tr>
<td>Tensile Modulus (psi)</td>
<td>ASTM D790</td>
<td>380,000</td>
<td>4,000,000</td>
</tr>
<tr>
<td>Width (inch)</td>
<td></td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Depth (inch)</td>
<td></td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Thickness (inch)</td>
<td></td>
<td>0.65</td>
<td>0.25</td>
</tr>
<tr>
<td>Weight (lbs/sf)</td>
<td></td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: Longitudinal (along) and Transverse (across) refer to fiber direction.
Design Considerations

- Inadequate shear strength or section depth
- Lack of interlock strength
- Limitation on cantilevered length: recent failures during construction
- Longevity: UV resistance, cold
- Lack of standardized tests, data and guide specifications
- USACE Engineering & Construction Bulletin, 2002-31 October 2002:

for use. In the meantime, vinyl sheet piling should not be used in applications where life safety and widespread property damage are at stake in the event of failure.
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE

- Selected Design for each of the two bulkhead
 - Double rows of sheets, FRP or heavy vinyl: No cantilever
 - Galvanized steel tiebacks and waler: Reliability
 - Single Waler: No diving (winter)
 - Scour protection: Protect toe
 - Drain holes: Reduce loads
Design Parameters

- 50-year low tide
- 50% drainage in fill
- 12’ depth to mudline (22 feet sheet length)
- 2 tons horizontal load per linear foot
- Tiebacks 6’ spacing
- 200 psf surcharge
Seabrook Harbor
Slope Stability Analysis
Analysis Method: Bishop (with Ordinary & Janbu)
Slip Surface Option: Fully Specified
Component Details

- **Waler:** 2 x 10” galvanized steel
 Channels on the outside

- **Tiebacks:** 18’ long, 2.25” galvanized steel tiebacks with turnbuckle,
 Oversized to allow for corrosion

- **Drains:** 2 x 2” dia holes with wire mesh/geotextile backing, located under water to prevent freezing
Recent Examples Viewed

- Fiberglass
• Recent Examples Viewed
 • Vinyl
• Construction
 – October 2004 – April 2005 (within the November-March dredging window)
 – Two barges, three cranes, clam shell, dozer, supply boats, Crew of 20
 – Hydraulic Dredge
 – Hydraulic vibratory hammer
 – Design called for vinyl or fiberglass; Contractor Submitted fiberglass sheeting with polyurethane resin (delivery and QC problems resulted in switch to different manufacturer and polyester resin)
 – Total length of two bulkheads = 1,700 feet
 – Sheet panel length = 27 feet (5 feet cut off to obtain required 22 feet)
 – Construction cost = $3 million
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE

20/10/2004
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE

16/11/2004
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE

MATERIAL: FRP

WEST BULKHEAD - EAST WALL

<table>
<thead>
<tr>
<th>DATE</th>
<th>SHEET LOCATION</th>
<th>GROUND ELEV.</th>
<th>TIP ELEV.</th>
<th>SHEET LENGTH</th>
<th>DRIVEN LENGTH</th>
<th>CUTOFF LENGTH</th>
<th>DRIVING TIME H.M.S</th>
<th>VIBRO MODEL</th>
<th>VIBRO WEIGHT</th>
<th>VIBRO FREQUENCY</th>
<th>CUTOFF LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td></td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1097</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1094</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1091</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1088</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1085</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1082</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1079</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1076</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1073</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1070</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1067</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1064</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1061</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1058</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1055</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1052</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1049</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1046</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1043</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1040</td>
<td>1.5</td>
<td>-18.5</td>
<td>25'</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28/2004</td>
<td>1037</td>
<td>1.5</td>
<td>-18.5</td>
<td>27</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28/2004</td>
<td>1034</td>
<td>1.5</td>
<td>-18.5</td>
<td>27</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28/2004</td>
<td>1031</td>
<td>1.5</td>
<td>-18.5</td>
<td>27</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28/2004</td>
<td>1028</td>
<td>1.5</td>
<td>-18.5</td>
<td>27</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28/2004</td>
<td>1025</td>
<td>1.5</td>
<td>-18.5</td>
<td>27</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28/2004</td>
<td>1022</td>
<td>1.5</td>
<td>-18.5</td>
<td>27</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28/2004</td>
<td>1019</td>
<td>1.5</td>
<td>-18.5</td>
<td>27</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28/2004</td>
<td>1016</td>
<td>1.5</td>
<td>-18.5</td>
<td>27</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28/2004</td>
<td>1013</td>
<td>1.5</td>
<td>-18.5</td>
<td>27</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28/2004</td>
<td>1010</td>
<td>1.5</td>
<td>-18.5</td>
<td>27</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/28/2004</td>
<td>1007</td>
<td>1.5</td>
<td>-18.5</td>
<td>27</td>
<td>5</td>
<td>80</td>
<td>216 ICE</td>
<td>5350</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE

12/06/2004
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
Field Issues & Lessons Learned
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE

25/10/2004
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE

25/10/2004
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
Instrumentation
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
<table>
<thead>
<tr>
<th>Location Station</th>
<th>Date</th>
<th>Time</th>
<th>Well Reading</th>
<th>Well Level MLW</th>
<th>Tide Reading</th>
<th>Tide Level MLW</th>
<th>Delta (Well - Tide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W4+00…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4/14/05</td>
<td>1049</td>
<td>42"</td>
<td>+1' 11"</td>
<td>36"</td>
<td>+0' 6"</td>
<td>+1' 5"</td>
</tr>
<tr>
<td>2</td>
<td>4/15/05</td>
<td>1000</td>
<td>30"</td>
<td>+2' 11"</td>
<td>26.5"</td>
<td>+1' 3.5"</td>
<td>+1' 7.5"</td>
</tr>
<tr>
<td>3</td>
<td>4/18/05</td>
<td>1317</td>
<td>34"</td>
<td>+2' 7"</td>
<td>29.5"</td>
<td>+1' 0.5"</td>
<td>+1' 6.5"</td>
</tr>
<tr>
<td>4A</td>
<td>4/19/05</td>
<td>1335</td>
<td>29.5"</td>
<td>+2' 11.5"</td>
<td>24.5"</td>
<td>+1' 5.5"</td>
<td>+1' 6"</td>
</tr>
<tr>
<td>4B</td>
<td>4/19/05</td>
<td>1440</td>
<td>36.5"</td>
<td>+2' 4.5"</td>
<td>31.5"</td>
<td>+0' 10.5"</td>
<td>+1' 6"</td>
</tr>
<tr>
<td>5</td>
<td>4/20/05</td>
<td>1451</td>
<td>33"</td>
<td>+2' 8"</td>
<td>31.5"</td>
<td>+0' 10.5"</td>
<td>+1' 10.5"</td>
</tr>
<tr>
<td>6</td>
<td>4/25/05</td>
<td>0659</td>
<td>38.5"</td>
<td>+2' 3"</td>
<td>40.5"</td>
<td>+0' 1.5"</td>
<td>+2' 1.5"</td>
</tr>
</tbody>
</table>
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES, SEABROOK, NEW HAMPSHIRE
Deformation Monitoring Log

<table>
<thead>
<tr>
<th>Reading Number</th>
<th>Location</th>
<th>Direct Angle</th>
<th>Inverse Angle</th>
<th>Average Angle</th>
<th>Direct Distance</th>
<th>Inverse Distance</th>
<th>Average Distance</th>
<th>Elevation</th>
<th>Deformation From Initial Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1+38 E</td>
<td>39°39'35"</td>
<td>39°39'39"</td>
<td>39°39'37"</td>
<td>88.24</td>
<td>88.24</td>
<td>88.24</td>
<td>1.77</td>
<td>E 0.069/N 0.00</td>
</tr>
<tr>
<td>2</td>
<td>1+38 E</td>
<td>39°39'36"</td>
<td>39°39'42"</td>
<td>39°39'39"</td>
<td>88.235</td>
<td>88.24</td>
<td>88.24</td>
<td>1.77</td>
<td>E 0.068/N 0.00</td>
</tr>
<tr>
<td>3</td>
<td>1+38 E</td>
<td>39°39'39"</td>
<td>39°39'41"</td>
<td>39°39'40"</td>
<td>88.245</td>
<td>88.235</td>
<td>88.24</td>
<td>1.77</td>
<td>E 0.068/N 0.00</td>
</tr>
</tbody>
</table>

Change from initial (inches) 0.83

<table>
<thead>
<tr>
<th>Reading Number</th>
<th>Location</th>
<th>Direct Angle</th>
<th>Inverse Angle</th>
<th>Average Angle</th>
<th>Direct Distance</th>
<th>Inverse Distance</th>
<th>Average Distance</th>
<th>Elevation</th>
<th>Deformation From Initial Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1+60 E</td>
<td>39°34'54"</td>
<td>39°35'00"</td>
<td>39°34'57"</td>
<td>110.025</td>
<td>110.035</td>
<td>110.03</td>
<td>1.82</td>
<td>E 0.044/N 0.00</td>
</tr>
<tr>
<td>2</td>
<td>1+60 E</td>
<td>39°34'55"</td>
<td>39°34'57"</td>
<td>39°34'56"</td>
<td>110.03</td>
<td>110.03</td>
<td>110.03</td>
<td>1.82</td>
<td>E 0.044/N 0.00</td>
</tr>
<tr>
<td>3</td>
<td>1+60 E</td>
<td>39°35'00"</td>
<td>39°34'54"</td>
<td>39°34'57"</td>
<td>110.035</td>
<td>110.03</td>
<td>110.03</td>
<td>1.82</td>
<td>E 0.044/N 0.00</td>
</tr>
</tbody>
</table>

Comments

Note: Initial Readings (1+38E 39°42'19" - 88.24 / 1+60E 39°36'19" - 110.03)

Third reading on completed wall
• Conclusions
 – Pick the right application. Despite some manufacturers’ claims, steel it is not!
 – Synthetic sheeting can be very cost effective (50% of cost of steel is possible)
 – Conservatism in design is recommended because of scarcity of test data.
 – Construction sequence is crucial to avoid overstressing the material
 – Synthetic sheeting is here to stay

• Current Needs
 – Standard (full scale panel) test methods & corresponding data
 – Standard guide specifications
 – Long term performance data (longevity)
 – Greater number of quality manufacturers
 – Information exchange among designers (USACE, NAVY, Others)
 – A committee to facilitate the exchange and develop standards
& our final product....
DESIGN AND CONSTRUCTION OF ANCHORED BULKHEADS WITH SYNTHETIC SHEET PILES
SEABROOK, NEW HAMPSHIRE

Thank you

siamac.vaghar@usace.army.mil