> Siamac Vaghar, PE Geotechnical Engineer

> > and

Francis Fung, PE

Structural Engineen

US Army Corps of Engineers, Concord, Massachusetts

Authority: Section 227 of the Water Resources and Development Act of 1996 (WRDA 96); Administered by ERDC

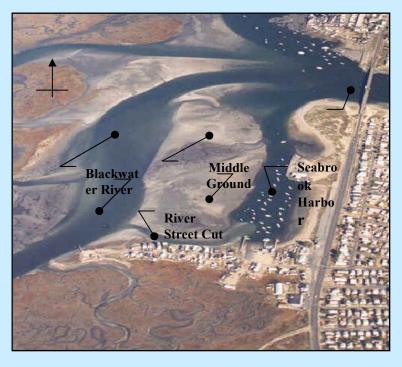
- Research & Development: Advance the state of the art of coastal <u>erosion</u> <u>control</u> technology
- Encourage and achieve the development of <u>innovative</u> solutions to the erosion control challenge
- <u>Communicate</u> findings to the public, state, and local coastal managers

Hampton-Seabrook Harbor, adjacent to the mouth of the Blackwater River, located in coastal New Hampshire, USA

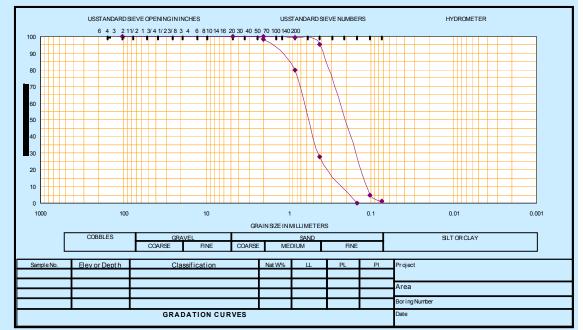
S

Ε

С


- S Ε С \mathbf{O} Ν 227
- **Objectives:**

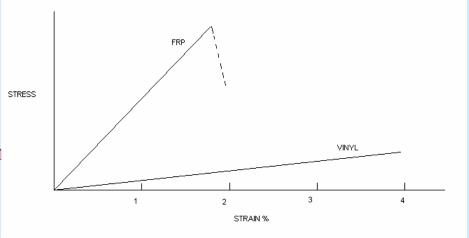
•


- Replace lost intertidal sands
- Reduce sand migration into the Harbor
- Prevent shoreline erosion
- Constraints
 - Innovative Components
 - Ability to remove
 - Dredging window of time, November through March
 - Cost
 - 50-year design life
- Solutions:

•

- Install cofferdams across the eroded channel using synthetic sheeting
- Dredge sand from the shoaled areas of the River to encourage flow
- Use the dredged sand to fill between the cofferdams to restore the sand flats

- Subsurface Conditions
 - Medium dense fine sand
 - Field SPT = 20
 - No obstructions



•

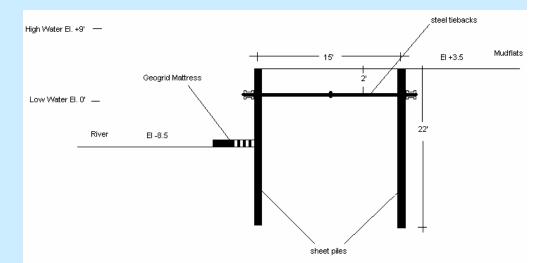
Synthetic Sheeting

- Vinyl: Made of virgin or recycled plastic or combination (recycled, with virgin veneer)
 - High tensile strength
 - Less brittle
 - 10+ years of case histories of use
- Fiber Reinforced Polymer (Fiberglass) Glass fibers embedded in resin matrix such as polyester, polyurethane, or vinyl ester.
 - High flexural strength
 - More brittle
 - Limited number of projects

		Vinyl	FRP			
Property	Test Method		Longitudinal*	Transverse*		
Tensile Strength (psi)	ASTM D638	6,300	60,000	10,000		
Tensile Modulus (psi)	ASTM D790	380,000	4,000,000	1,000,000		
Width (inch)		18	18			
Depth (inch)		12	8	8		
Thickness (inch)		0.65	0.65 0.25			
Weight (lbs/sf)		8	4			
3				ртн		

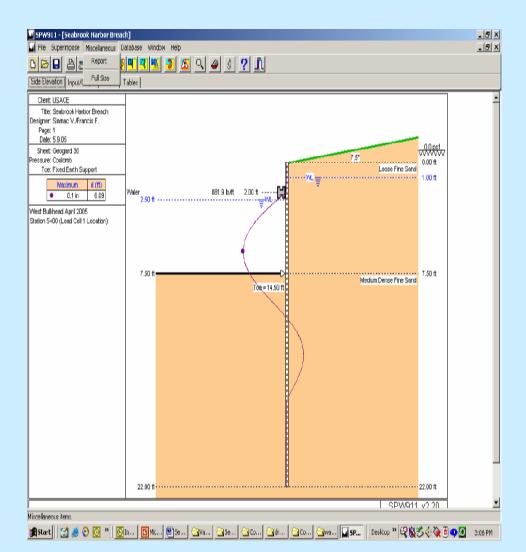
• Design Considerations

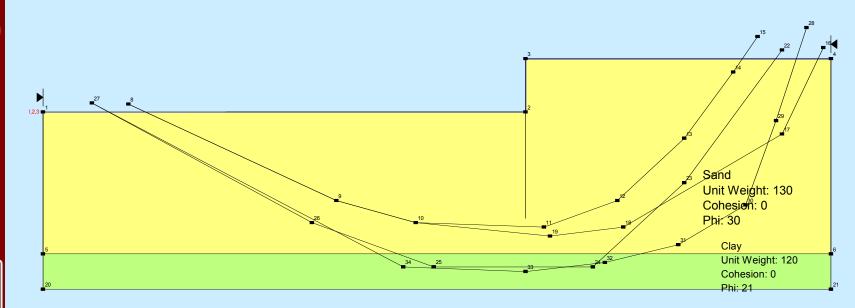
- Inadequate shear strength or section depth
- Lack of interlock strength
- Limitation on cantilevered length: recent failures during construction
- Longevity: UV resistance, cold
- Lack of standardized tests, data and guide specifications
- USACE Engineering & Construction Bulletin, 2002-31 October 2002:


for use. In the meantime, vinyl sheet piling should not be used in applications where life safety and widespread property damage are at stake in the event of failure.

•

Selected Design for each of the two bulkhead


- Double rows of sheets, FRP or heavy vinyl: No cantilever
- Galvanized steel tiebacks and waler: Reliability
- Single Waler: No diving (winter)
- Scour protection: Protect toe
- Drain holes: Reduce loads



- **50-year low tide**
- 50% drainage in fill
- 12' depth to mudline (22 feet sheet length)
- 2 tons horizontal load per linear foot
- Tiebacks 6' spacing
- 200 psf surcharge

Seabrook Harbor Slope Stability Analysis Analysis Method: Bishop (with Ordinary & Janbu) Slip Surface Option: Fully Specified

Component Details

- Waler: 2 x 10" galvanized steel Channels on the outside
- Tiebacks: 18' long, 2.25" galvanized steel tiebacks with turnbuckle, Oversized to allow for corrosion
- Drains: 2 x 2" dia holes with wire mesh/geotextile backing, located under water to prevent freezing

•Recent Examples Viewed •Fiberglass

•Recent Examples Viewed •Vinyl

Construction

- October 2004 April 2005 (within the November-March dredging window)
- Two barges, three cranes, clam shell, dozer, supply boats, Crew of 20
- Hydraulic Dredge
- Hydraulic vibratory hammer
- Design called for vinyl or fiberglass; Contractor Submitted fiberglass sheeting with polyurethane resin (delivery and QC problems resulted in switch to different manufacturer and polyester resin)
- Total length of two bulkheads = 1,700 feet
- Sheet panel length = 27 feet (5 feet cut off to obtain required 22 feet)
- Construction cost = \$3 million

S

Ε

С

 \mathbf{O}

Ν

227

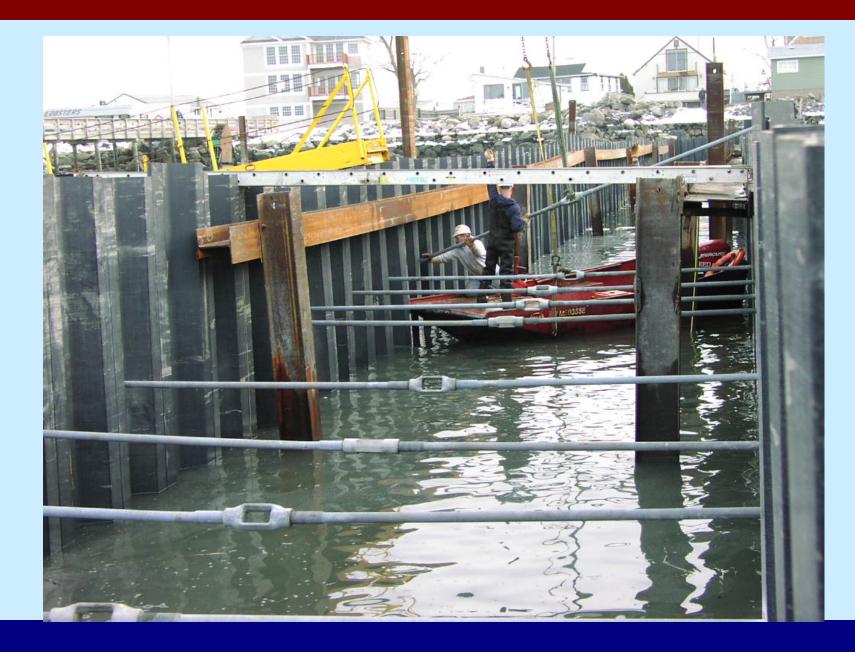
S

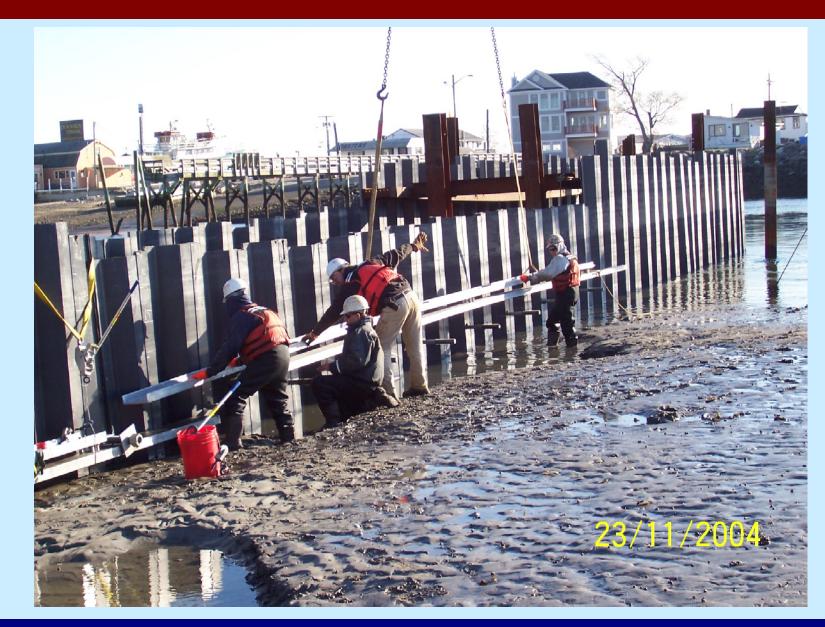
Ε

С

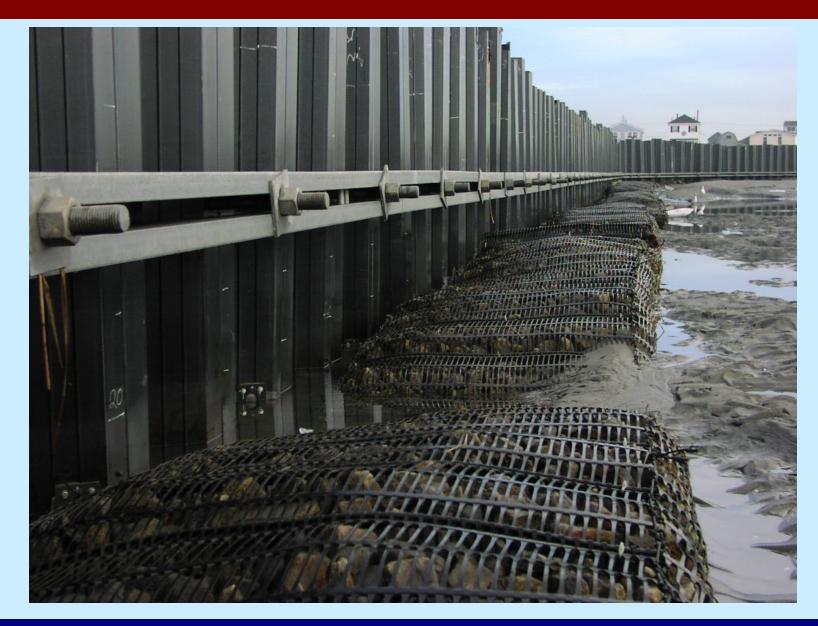
Т

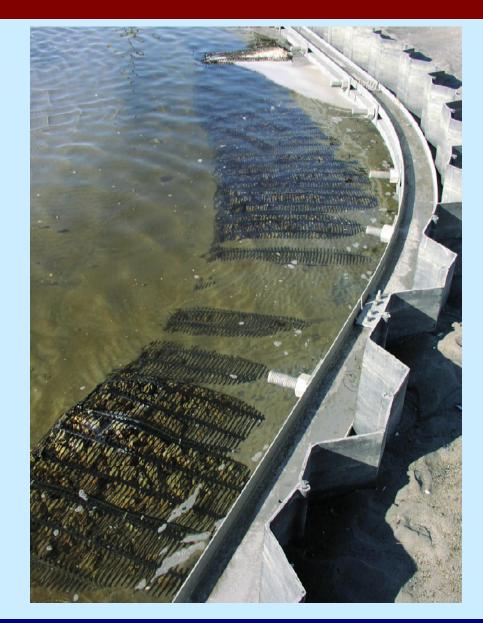
0

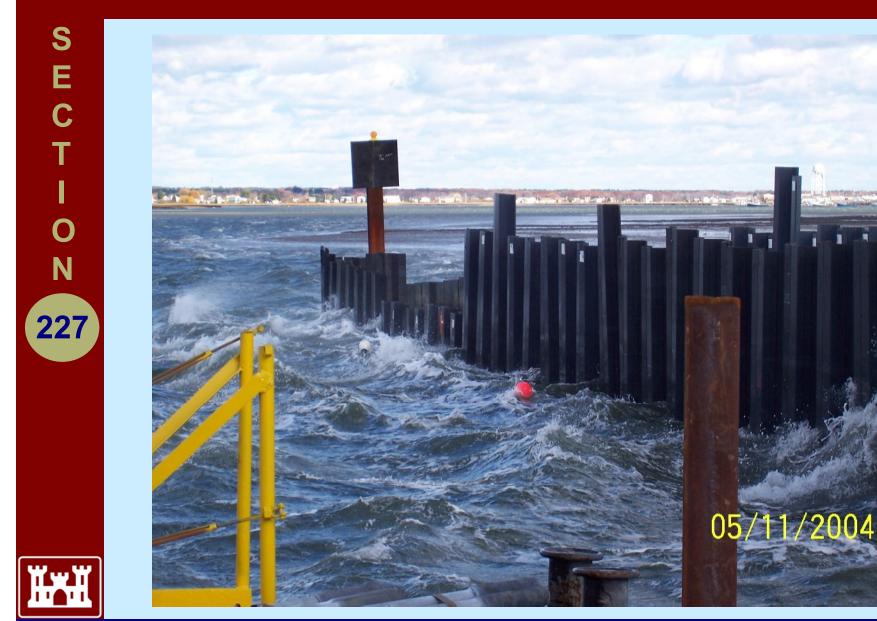

Ν

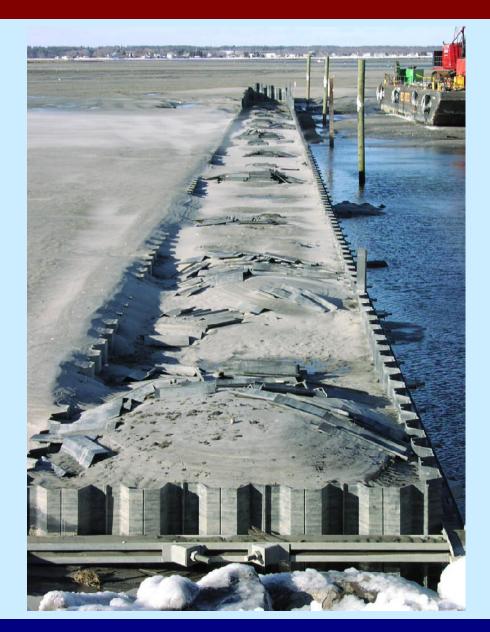

227

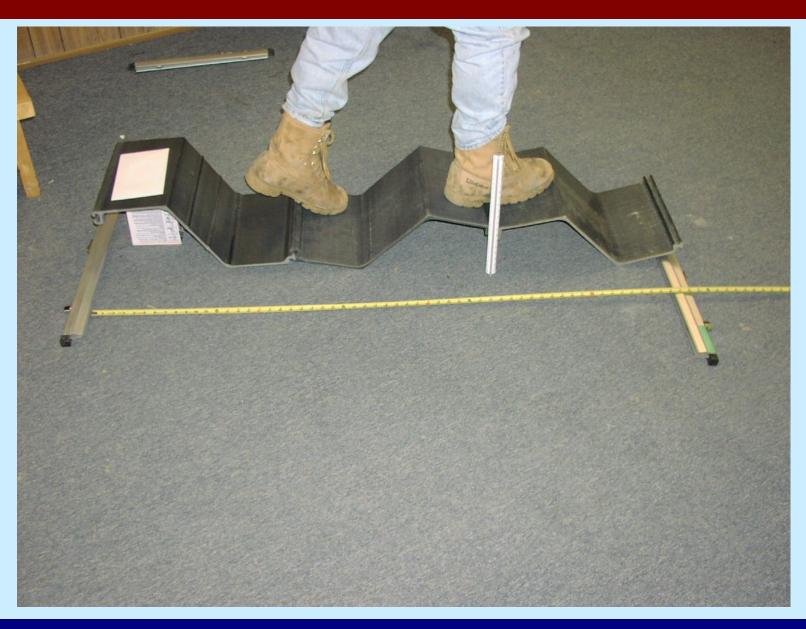
MATERIAL:	FRP						1				
WEST BUL	KHEAD - EAST	WALL									
DATE	SHEET	GROUND		SHEET	DRIVEN	CUTOFF	DRIVING	VIBRO	VIBRO	VIBRO	CUTOFF
DRIVEN	LOCATION	ELEV.	ELEV.	LENGTH	LENGTH	LENGTH	TIME H.M.S	MODEL	WEIGHT	FREQUENCY	LENGTH
	1100		-18.5			5		216 ICE	5350		
	1097	1.5				5		216 ICE	5350		
	1094	1.5				5		216 ICE	5350		
	1091	1.5				5		216 ICE	5350		
	1088	1.5				5		216 ICE	5350		
	1085	1.5				5		216 ICE	5350		
	1082	1.5				5		216 ICE	5350		
	1079	1.5				5		216 ICE	5350		
	1076	1.5				5		216 ICE	5350		
	1073	1.5				5		216 ICE	5350		
	1070	1.5	-18.5			5	80	216 ICE	5350		
	1067	1.5				5	80	216 ICE	5350		
	1064	1.5	-18.5	25'		5	80	216 ICE	5350		
	1061	1.5	-18.5			5	80	216 ICE	5350		
	1058	1.5	-18.5			5	80	216 ICE	5350		
	1055	1.5	-18.5	25'		5	80	216 ICE	5350		
	1052	1.5	-18.5	25'		5	80	216 ICE	5350		
	1049	1.5	-18.5	25'		5	80	216 ICE	5350		
	1046	1.5	-18.5	25'		5	80	216 ICE	5350		
	1043	1.5	-18.5	25'		5	80	216 ICE	5350		
	1040	1.5	-18.5	25'		5	80	216 ICE	5350		
10/28/200	4 1037	1.5	-18.5	27		5	80	216 ICE	5350		
10/28/200	4 1034	1.5	-18.5	27		5	80	216 ICE	5350		
10/28/200	4 1031	1.5	-18.5	27		5	80	216 ICE	5350		
10/28/200	4 1028	1.5	-18.5	27		5	80	216 ICE	5350		
10/28/200	4 1025	1.5	-18.5	27		5	80	216 ICE	5350		
10/28/200	4 1022	1.5	-18.5	27		5	80	216 ICE	5350		
10/28/200	4 1019	1.5	-18.5	27		5	80	216 ICE	5350		
10/28/200	4 1016	1.5	-18.5	27		5	80	216 ICE	5350		
10/28/200	4 1013	1.5	-18.5	27		5	80	216 ICE	5350		
10/28/200	4 1010	1.5	-18.5	27		5	80	216 ICE	5350		
10/28/200	4 1007	1.5	-18.5	27		5	80	216 ICE	5350		










Field Issues & Lessons Learned

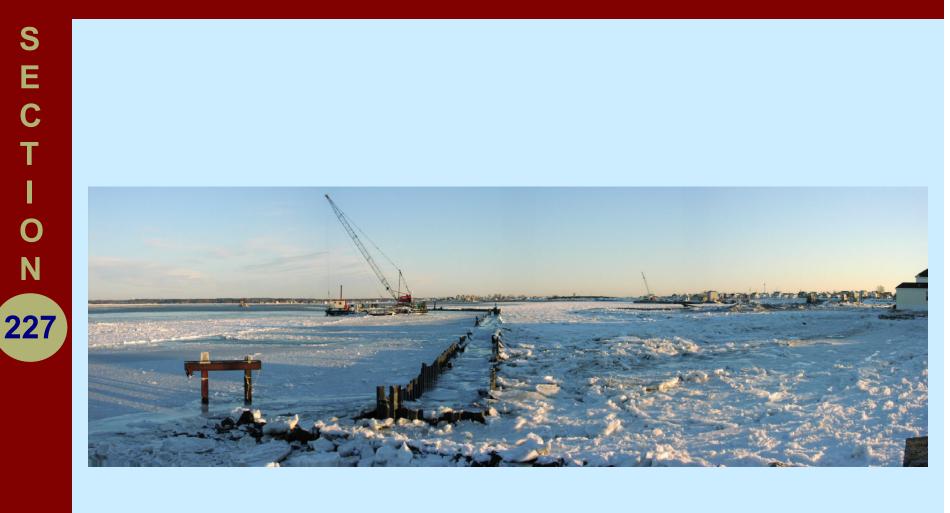
S

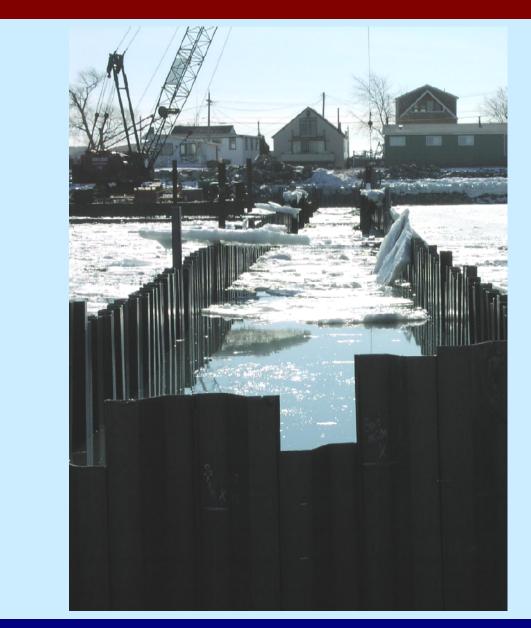
Ε

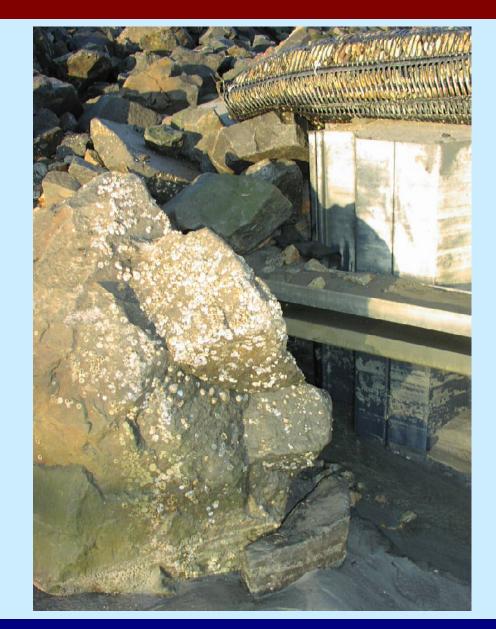
С

Т

0


Ν





S

Ε

С

Т

0

Ν

227

Instrumentation

Location Station	Date	Time	Well Reading	Well Level MLW	Tide Reading	Tide Level MLW	Delta (Well - Tide)
W4+00							
1	4/14/05	1049	42"	+1' 11"	36"	+0' 6"	+1' 5"
2	4/15/05	1000	30"	+2' 11"	26.5"	+1' 3.5"	+1' 7.5"
3	4/18/05	1317	34"	+2' 7"	29.5"	+1' 0.5"	+1' 6.5"
4A	4/19/05	1335	29.5"	+2' 11.5"	24.5"	+1' 5.5"	+1' 6"
4B	4/19/05	1440	36.5"	+2' 4.5"	31.5"	+0' 10.5"	+1' 6"
5	4/20/05	1451	33"	+2' 8"	31.5"	+0' 10.5"	+1' 10.5"
6	4/25/05	0659	38.5"	+2' 3"	40.5"	+0' 1.5"	+2' 1.5"

S E C T I O N 227

		De	etorm	ation	IVION	itorin	g log)	
								Date:	4/6/2005
								Time:	2:30 PM
Project:	Seabrook Harbor Se	ection 227 F	Project					Temp:	58°F BP 30.24
-	W912WJ-04-C-0009							Weather:	FAIR
								Surveyed By:	W. Saucier
Reading Number	Location	Direct Angle	Inverse Angle	Average Angle	Direct Distance	Inverse Distance	Average Distance	Elevation	Deformation From Initia Reading
1	1+38 E	39°39'35"	39°39'39"	39°39'37"	88.24	88.245	88.24	1.77	E 0.069/N 0.00
2	1+38 E	39°39'36"	39°39'42"	39°39'39"	88.235	88.24	88.24	1.77	E 0.068/N 0.00
3	1+38 E	39°39'39"	39°39'41"	39°39'40"	88.245	88.235	88.24	1.77	E 0.068/N 0.00
								0.02	
					Change	ge from initial (inches)			0.83
1	1+60 E	39°34'54"	39°35'00"	39°34'57"	110.025	110.035	110.03	1.82	E 0.044/N 0.00
2	1+60 E	39°34'55"	39°34'57"	39°34'56"	110.03	110.03	110.03	1.82	E 0.044/N 0.00
3	1+60 E	39°35'00"	39°34'54"	39°34'57"	110.035	110.03	110.03	1.82	E 0.044/N 0.00
								0	
	Comments								
Note:Initial Rea	adings (1+38E 39°42	2'19" - 88.24	/ 1+60E 39	9°36'19" - 1 <i>'</i>	10.03)				
	Third reading on co								

Conclusions

- Pick the right application. Despite some manufacturers' claims, steel it is not!
- Synthetic sheeting can be very cost effective (50% of cost of steel is possible)
- Conservatism in design is recommended because of scarcity of test data.
- Construction sequence is crucial to avoid overstressing the material
- Synthetic sheeting is here to stay

Current Needs

- Standard (full scale panel) test methods & corresponding data
- Standard guide specifications
- Long term performance data (longevity)
- Greater number of quality manufacturers
- Information exchange among designers (USACE, NAVY, Others)
- A committee to facilitate the exchange and develop standards

& our final product....

Ĭ

October 2004

April 2005

Thank you

ĬĸĬ

siamac.vaghar@usace.army.mil