

2005 Tri-Service Infrastructure Systems Conference and Exhibition

2-D Liquefaction Evaluation with *Q4Mesh*

-David C. Serafini, M.S., P.E. US Army Corps of Engineers, Sacramento, CA

Presentation Outline

Liquefaction Evaluation Overview
Overview of Quad4m
Overview of Q4Mesh
Liquefaction Evaluation with Q4Mesh
Example Q4Mesh Liquefaction Model

Liquefaction Evaluation Overview

- Two-dimensional seismic response and liquefaction evaluations of earth structures and soil deposits can be complex and time intensive
- Techniques available for their evaluation range from <u>simplified models</u> to <u>advanced constitutive</u> and <u>non-</u> <u>linear models</u>

Liquefaction Evaluation Overview

Simplified Models

- Simplified Seed and Idriss procedures
- 1-D equivalent linear SHAKE type analysis at multiple locations
- Evaluations can be made quickly

Advanced Models

- Most accommodate the non-linear behavior of soils
- Evaluations are more complex and time intensive

Equivalent Linear Models

- Can be used to approximate the actual nonlinear behavior of the soil
- Quad4m (two-dimensional seismic response)

Overview of Quad4m

Quad4m (A Computer Program For Evaluating The Seismic Response Of Soil Structures)

- U.C.Davis, 1993
- by Martin Byrd Hudson, I.M.Idriss, and Mohsen Beikae

MODIFIED FROM QUAD4, 1973

 by I.M. Idriss, J. Lysmer, R. Hwang and H. Bolton Seed

Overview of Quad4m

- The Quad4m analysis numerically models a continuum with a finite number of elements interconnected at their common nodes
- The analysis is done exclusively in the time domain, and the response of the soil deposit follows the same approximation of nonlinear hysteretic manner that is conventional SHAKE (1-D) analysis when subject to loading

Overview of Quad4m

- Direct numerical integration by the software is used to solve an equation of motion for the finite element mesh to determine the developed:
 - Peak Element Shear Stresses (sig-xy, τ_{max})
 - Peak Element Shearing Strains (eps, γ_{max})
 - Peak Element Principle Stresses (sig-x, sig-y)
 - Peak Nodal Accelerations (a_{max})

Overview of Q4Mesh

- The Q4Mesh program is a modification of the WinMesh program to create and analyze Quad4m data
- Q4mesh was developed by ERDC (Engineering Research and Development Center) at WES (Waterways Experimental Station) with some assistance provided from the USACE Sacramento District

US Army Corps

of Engineers Sacramento District

Overview of Q4Mesh

Q4Mesh can be used to:

- Create the Quad4m finite element mesh

 Interpret the output files from Quad4m and <u>two</u> additional user files to conduct a liquefaction evaluation

Overview of Q4Mesh

Q4Mesh(Main Screen)

3 August 2005

Overview of Q4Mesh

Additional Input Files for Q4Mesh

	Z EDOLF_PHREATIC.dat - Notepad	<u>- 🗆 ×</u>
	File Edit Format Help	
	6.75 0.28 0.0 1.0 135 130 12	<u>~</u>
3	700 550	
1	1000 550 1131 3 590	
	1221.6 625.0	
	1316.9 662.5	
	1410.3 691.5	
	1576.5 625	
	1754 570	
	1815 550 2114 550	
4)	6 2114 330	
5)	700 662.5	
	1389.2 653.25	
	1415.75 582.875	
	2114 550	
	1) magnitude pas fines (not used) factor of safety, sat unit weight moist unit weig	h+
	2) Number of Ground Surface Points	inc inc
	3) Ground Surface X, Y Values	
	5) Phreatic Surface X, Y Values	
		-

	DOLF_	N160_DATA.dat - Notepad	<u>_ </u>
File	Edit	Format Help	
1	50 50		<u>_</u>
3	50		
4	45		
6	50 50		
ž	50		
8	10		
10	20		
11	10		
12	15		
14	60		
Lay	er	Blowcount	
			T

Blowcount File

Surface, Phreatic, and Earthquake File

3 August 2005

Overview of Q4Mesh

Basic Liquefaction Procedure Equation

$$F.S._{LIQ} = \left(\frac{CRR_{()}}{CSR_{()}}\right) \left[MSF\right] \left[k_{\sigma}\right] \left[K_{\alpha}\right]$$

CSR	(Cyclic Stress Ratio)
CRR	(Cyclic Resistance Ratio)
Κσ	(Stress Correction
Κα	(Sloping Ground Correction)
MSF	(Magnitude Scaling Factor)

Example Q4Mesh Liquefaction Model

Cyclic Resistance Ratio, CRR (Vs1 Data)

3 August 2005

Example Q4Mesh Liquefaction Model

Cyclic Resistance Ratio, CRR (N1,60 Data)

3 August 2005

Example Q4Mesh Liquefaction Model

Stress Correction Factor, Ko

3 August 2005

Example Q4Mesh Liquefaction Model

Magnitude Scaling Factor (MSF)

3 August 2005

Example Q4Mesh Liquefaction Model

Embankment Dam on a Liquefiable Foundation (EDOLF)

Example Q4Mesh Liquefaction Model

Finite Element Mesh

Embankment Dam on Liquefiable Foundation (EDOLF)

- Finite Element Mesh with Zones
- Location of Water Surface/Phreatic Surface
- Boundary Conditions

Example Q4Mesh Liquefaction Model

Material Properties

Material Properties:

Zone	Material	Vs (ft/s)	(N1)60	Shear Modulus Degradation Curve	Material Damping Curve
1	Embankment Shell	800	50	Sand Upper Bound (Seed & Idriss 1970)	Sand Upper Bound (Seed & Idriss 1970)
2	Embankment Shell	1000	50	Sand Upper Bound (Seed & Idriss 1970)	Sand Upper Bound (Seed & Idriss 1970)
3	Embankment Shell	1200	50	Sand Upper Bound (Seed & Idriss 1970)	Sand Upper Bound (Seed & Idriss 1970)
4	Core	1200	45	Clay (PI=10-20 Sun et al. 1988)	Clay Average (Seed & Idriss 1970)
5	Embankment Shell	800	50	Sand Upper Bound (Seed & Idriss 1970)	Sand Upper Bound (Seed & Idriss 1970)
б	Embankment Shell	1000	50	Sand Upper Bound (Seed & Idriss 1970)	Sand Upper Bound (Seed & Idriss 1970)
7	Embankment Shell	1200	50	Sand Upper Bound (Seed & Idriss 1970)	Sand Upper Bound (Seed & Idriss 1970)
8	Recent Alluvium	450	10	Sand Average (Seed & Idriss 1970)	Sand Average (Seed & Idriss 1970)
9	Recent Alluvium	550	15	Sand Average (Seed & Idriss 1970)	Sand Average (Seed & Idriss 1970)
10	Recent Alluvium	650	20	Sand Average (Seed & Idriss 1970)	Sand Average (Seed & Idriss 1970)
11	Recent Alluvium	450	10	Sand Average (Seed & Idriss 1970)	Sand Average (Seed & Idriss 1970)
12	Recent Alluvium	550	15	Sand Average (Seed & Idriss 1970)	Sand Average (Seed & Idriss 1970)
13	Recent Alluvium	650	20	Sand Average (Seed & Idriss 1970)	Sand Average (Seed & Idriss 1970)
14	Older Alluvium	2000	60	Clay Upper Range (Idriss, 1990)	Clay (Idriss, 1990)

Example Q4Mesh Liquefaction Model

Input Earthquake Record

- IMPERIAL VALLEY EARTHQUAKE, CA; OCT 15, 1979
- Mw=6.75 at 22km
- Amax=0.28g
- Filtered Record Low-Pass=20hz
- Bracketed Duration ~22 seconds
- "ROCK OUTCROP MOTION"

Example Q4Mesh Liquefaction Model

Input Shear Wave Velocities

Example Q4Mesh Liquefaction Model

Quad4m Analysis Results

3 August 2005

Example Q4Mesh Liquefaction Model

Peak Nodal Horizontal Acceleration (g)

3 August 2005

Example Q4Mesh Liquefaction Model

Peak Element Induced Shear Stress and Strain

3 August 2005

Example Q4Mesh Liquefaction Model

Q4Mesh Analysis and Results

3 August 2005

Example Model

3 August 2005

Example Q4Mesh Liquefaction Model

Normalized Shear Wave Velocities

3 August 2005

Example Q4Mesh Liquefaction Model

Input Blowcount Data, (N₁)₆₀ (blows/ft)

Example Q4Mesh Liquefaction Model

Cyclic Resistance Ratio CRR - Vs1 Values - (N1)60 Blowcount Values

Example Q4Mesh Liquefaction Model

Cyclic Resistance Ratio, CRR (Calculated from the Vs1 Values)

$$\mathbf{CRR_{Vsl}} = \left[0.022\right] \left[\frac{\mathbf{Vsl}}{100}\right]^2 + \left[\frac{2.8}{215 \cdot \mathbf{Vsl}}\right] - \left[\frac{2.8}{215}\right]$$

NCEER Workshop Andrus and Stokoe (1997)

3 August 2005

Example Q4Mesh Liquefaction Model

Cyclic Resistance Ratio, CRR

- (Calculated from the $(N_1)_{60}$ Values)

3 August 2005

Example Q4Mesh Liquefaction Model

Cyclic Stress Ratio CSR - Peak Element Stresses - Seed and Idriss Simplified Procedure

Example Q4Mesh Liquefaction Model

Cyclic Stress Ratio, CSR

- (Calculated from Quad4m Peak Induced Shear Stresses)

Example Q4Mesh Liquefaction Model

Cyclic Stress Ratio, CSR

- (Calculated from Simplified Procedure)

 $CSR = (\tau_{av}/\sigma'_{vo}) = 0.65(a_{max}/g)(\sigma_{vo}/\sigma'_{vo})rd$ Parameters as Defined by Youd and Idriss 2001

3 August 2005

Example Q4Mesh Liquefaction Model

Stress Correction Factor, Kσ

3 August 2005

Example Q4Mesh Liquefaction Model

Liquefaction Potential Factor of Safety, Vs₁ Data

3 August 2005

Example Q4Mesh Liquefaction Model

Liquefaction Potential Factor of Safety, (N₁)₆₀ Data

3 August 2005

Concluding Remarks

- Q4Mesh enables the ability to conduct 2-D liquefaction potential evaluations from Quad4m output data
 - Quad4m and Q4Mesh can be used as a first step evaluation before more advanced models are implemented
 - User experience and correct model generation is important when evaluating the Quad4m output files

3 August 2005

References

- Idriss, I. M., and Boulanger, R. W. (2004). "Semi-empirical procedures for evaluating liquefaction potential during earthquakes." Proc., 11th International Conference on Soil Dynamics and Earthquake Engineering, and 3rd International Conference on Earthquake Geotechnical Engineering, D. Doolin et al., eds., Stallion Press, Vol. 1, 32-56.
- Boulanger, R. W. and Idriss, I. M. (2004). "State normalization of penetration resistances and the effect of overburden stress on liquefaction resistance." Proc., 11th International Conference on Soil Dynamics and Earthquake Engineering, and 3rd International Conference on Earthquake Geotechnical Engineering, D. Doolin et al., eds., Stallion Press, Vol. 2, 484-491.
- Youd, T. L. and Idriss, I. M. (2001). "Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 4, pp. 297-313.

3 August 2005

2005 Tri-Service Infrastructure Systems Conference and Exhibition

3 August 2005

2005 Tri-Service ISC

40

Contact Information

David C. Serafini, M.S., P.E. US Army Corps of Engineers, Sacramento, CA 1325 J. Street Sacramento, CA 95814 (916) 557-7584 david.c.serafini@hotmail.com

