Slope Stability Evaluation of the Baldhill Dam Right Abutment

Presentation for the

2005 Tri-Service Infrastructure Systems Conference

> *Neil T. Schwanz* RTS Geotechnical Engineer

> > 4 August 2005

Motivation

History of Right Abutment Displacement Continued Movements Expanded Record of Instrumentation Establish Slope Stability Models ✓ Recent Conditions

✓ Predict Future Loading Conditions

Mississippi Valley Division Mississippi River Commission PLUE DIS COLOR

Acknowledgments

MVP Geologists and Instrumentation Group Omaha District and Local Testing Labs MWH (formerly Harza Engineering) University of Minnesota

One Corps Serving the Armed Forces and the Nation

Topics

Project Background Pressuremeter Testing Laboratory Testing Data Interpretation Slope Stability Analyses ✓ Limit Equilibrium

Numerical

งา กนรูนอเ งง

Main Features

Stratigraphy

One Corps Serving the Armed Forces and the Nation

04 August 05

Inclinometer Displacement

Fig. 2.8. Inclinometer Displacement Rate Comparison

Displacement vs Pore Water Cond.

SI-7 and SI-20 (43' depth)

Shear Modulus (D.Shale)

Laboratory Testing

Unconfined Compression

Triaxial Shear Strength

- Unconsolidated-Undrained
- Consolidated-Undrained w/PP

Direct Shear

Residual Direct Shear

Effective Shear Strength Parameters

Material	Peak				15% Strain/0.2 or 0.5 in. Displacement			Residual	
	Triaxial		Direct Shear		Triaxial		Direct Shear		
	c' (psf) [kPa]	φ' (deg)	c' (psf) [kPa]	φ' (deg)	c' (psf) [kPa]	φ' (deg)	c' (psf) [kPa]	φ' (deg)	ϕ'_{res} (deg)
Till	500 [23.9]	25	650 [31.2]	24	600 [28.7]	23	350 [16.8]	23	16
D. Shale	1100 [52.7]	26	325 [15.6]	29	850 [40.7]	23	250 [12.0]	21	9.5
I. Shale	1975 [94.6]	35	575 [27.5]	23	375 [18.0]	23	0	16	6.3

One Corps Serving the Armed Forces and the Nation

ſr		ות	
11			
	_	_	

MATERIAL PARAMETERS

MATERIAL	SAT. UNIT WT. (PCF)	EFF. COHESION (PSF)	EFF. FRICTION ANGLE (DEG)	
TILL	123	650	24	
DEFORMED SHALE - SECTION A	125	D	9.2	
DEFORMED SHALE - SECTION B	125	0	9.9	
INTACT SHALE	128	600	24	

FLAC Stratigraphy: Pre-Project

FLAC: Pre-1996 Wall

FLAC: Pre-1996 Wall

FLAC: 1996 Wall

FLAC: 1996 Wall

FLAC: 1996 Wall

Summary

History of problems Instrumentation extremely important ✓ Understanding mechanism of displacement ✓ Identifying geometry of failure surface

Pressuremeter testing (elastic properties) Laboratory testing (shear strength) Limit equilibrium (back calculation)

Summary (con't)

FLAC results

- ✓ No searching for the critical failure surface
- Compute displacements with visual representation
- ✓ Helps in understanding problem
- General agreement with limit equilibrium results
- Abutment is stable to past historic high GWL's
- Abutment is at risk of failure to extreme GWL's
- At an intermediate GWL, abutment may be stable, but with much more deflection of the 1996 drilled shaft wall

QUESTIONS?