Ground-Penetrating Radar Applications for the Assessment of Pavements

Lulu Edwards
Research Engineer
and
Don R. Alexander
Chief, Airfields and Pavements Branch

Airfields and Pavements Branch (APB)
Geotechnical and Structures Laboratory
US Army Engineer Research and Development Center
Vicksburg, MS
Capabilities of GPR

- Layer thicknesses
- Void location
- Stripping in asphalt layers
- Presence of moisture
- Detection/locate subsurface anomalies

GPR contributes to the structural assessment of pavements

- Predict pavement performance
- Determine upgrade requirements
- Prevent unforeseen pavement failures

GPR is nondestructive

- Quicker results
- Fewer delays and interference
ERDC GPR Applications

- **Airfield evaluations**
 - Current pavement condition
 - Layer thicknesses can be used with falling weight deflectometer (FWD) data to backcalculate layer moduli

- **Road structures**
 - Maintenance and repair
 - Future design

- **Test sections at ERDC**
 - Quality assurance tool
Pulse Radar System

- Developed under Small Business Innovative Research (SBIR) with Pulse Radar (Houston, TX)
- Multi-Antenna
 - 1 GHz (1 meter)
 - 500 MHz (2 meters)
 - 250 MHz (3 meters)
 - 100 MHz (5-10 meters)
- Operates at highway speeds
Note: Requires dielectric discontinuity at layer interfaces
GPR Equations

- **Layer thickness**

 \[h = \frac{c \times \Delta t}{2\sqrt{\varepsilon}} \]

 - \(h \) = layer thickness
 - \(c \) = speed of light
 - \(\Delta t \) = two way travel time
 - \(\varepsilon \) = dielectric

- **Dielectric values**

 - Use assumed value (typically 6.0 for asphalt, 8.0 for concrete)
 - Backcalculate dielectric from core
 - Use equations

\[
\begin{align*}
\varepsilon_a &= \left[1 + \frac{A_0}{A_m}\right]^2 \\
\sqrt{\varepsilon_b} &= \sqrt{\varepsilon_a} \left[1 - \left(\frac{A_0}{A_m}\right)^2 \right]^2 + \left(\frac{A_1}{A_m}\right) \\
\varepsilon_a &= \text{dielectric of first layer} \\
\varepsilon_b &= \text{dielectric of base layer} \\
A_m &= \text{metal reflection amplitude} \\
A_0 &= \text{surface reflection amplitude} \\
A_1 &= \text{base reflection amplitude}
\end{align*}
\]

Scullion et al, 1994
Layer interfaces (signal peaks) are found using a cross-correlation technique.

Layer thickness are calculated using the locations of the signal peaks and the previous equations.

Layer thickness measurements improve when calibrated/corrected with a thickness value from a single core (“ground truth”).
GPR Display
Detection of Subsurface Utilities

Pipe
Utility
Layer 1 original and corrected thicknesses as determined from the 1 GHz antenna on the ERDC asphalt test pavement
Differences/Errors

Asphalt test pavement – Asphalt, layer 1 (1 GHz)

Asphalt test pavement – Base, layer 2 (1 GHz)
Verification – Rigid Pavement

Layer 1 original and corrected thicknesses as determined from the 1 GHz antenna on the Portland Cement Concrete (PCC) airfield pavement
Differences/Errors

PCC airfield pavement – layer 1 (1 GHz)

PCC airfield pavement – layer 1 (500 MHz)
Summary and Conclusions

- Continuous thickness measurements along the entire length of the pavement ensure that changes in layer structure will be detected.

- Combination of the 1GHz and 500 MHz antenna appears to provide both the resolution and penetration necessary for sampling most typical pavement structures.

- At least one core is required to calibrate GPR thicknesses:
 - Flexible pavement - error is reduced from an average of 1.04 inches to 0.42 inches.
 - Rigid pavement – error is reduced from an average of 1.59 inches to 0.19 inches.
Summary and Conclusions

- Measuring layer thicknesses with GPR has the potential to minimize time required for pavement evaluations by optimizing coring and DCP testing.

- GPR is useful for detecting utilities.

- Using layer thicknesses from GPR along with FWD data results in more accurate backcalculated moduli, and therefore, more reliable predictions of structural capacity.