An Overview of Criteria Used by Various Organizations for Assessment and Seismic Remediation of Earth Dams

2005 Tri-Service Infrastructure Systems Conference and Exhibition

St. Louis, Missouri

Presentation Overview

- Purpose
- Background
- Issues
- Approach to This Study
- Interpretation by Various Agencies
- Comparison of Agency Criteria
- Summary

Purpose of This Study

- How do you assess liquefaction?
- How do you assess resulting deformations?
- How do you adequately remediate for predicted seismic damage?
- What do USACE guidance documents suggest?
- What do other dam safety entities suggest?

Purpose of This Study

What qualifies as failure? What level do I remediate to?

The Issues

- Liquefaction Triggering Potential
- Residual Soil Strengths and Post-Earthquake Stability
- Expected Permanent Deformations
- Adequacy of Solution (i.e., assessing risk)

Complex Failure Mechanisms + Sensitive Response to Input Parameters + Risk of Catastrophic Failure + Huge Remediation Costs = A Challenging Problem

Liquefaction Triggering

$FS = \frac{Cyclic Resistance Ratio, CRR}{Cyclic Stress Ratio, CSR}$

Liquefaction Triggering

$$FS = \frac{CRR}{CSR} \times MSF \times K_{\alpha} \times K_{\sigma}$$

MSF = Magnitude Correction K_{σ} = Confinement Correction K_{α} = Shear Stress Correction

 $FS = \frac{0.22}{0.15} = 1.5 x \dots$

Liquefaction Triggering

ASCE, JGGE, 10/2001

Residual Soil Strengths

Permanent Deformations

Newmark's Method or Numerical Modeling?

Judging Adequacy of Analyses or Designs

Approach to This Study

- Research how USACE and other agencies address the following:
 - Liquefaction Triggering Assessment
 - Liquefied Soil Residual Strength Assessment
 - Permanent Deformation Assessment
 - Adequacy Assessment for Existing or Remediated Structure
- Interviews, Review of Guidance Documents and Other Publications
- Current as of 2001

The Agencies

- U.S. Army Corps of Engineers (USACE)
- U.S. Bureau of Reclamation (USBR)
- Federal Energy Regulatory Commission (FERC)
- California Department of Water Resources (CADWR)
- British Columbia Hydro (BCH)

USACE Approach

Phase II Special Study

- Gather required data.
- Deterministic analysis for MCE.
- Complete liquefaction analyses.
- Establish post-liquefaction strengths.
- Perform static limit equilibrium (LE) analyses.
- Perform finite element (FE) deformation analyses.
- Use LE and FE to evaluate remediation alternatives.

USBR Approach

- Incorporating risk based methodologies.
 - MCE (Probabilistic or Deterministic)
 - Potential fatalities
 - Confidence in data
- Ground motion frequency content "matched" to structure
- Use total stresses to evaluate liquefaction potential.
- Require higher post-earthquake LE safety factors.
- Remediate based on probability and consequences of failure.

FERC Approach

- Deterministic analysis for MCE.
- Low confidence in numerical modeling, relying on Newmark type analyses.
- Deformations limited to 2 feet (some exceptions).
- Deformations considered valid only for Post-Earthquake Limit Equilibrium FS > 1.0

CADWR Approach

- Deterministic analysis for MCE.
- Low confidence in numerical modeling, relying on Newmark type analyses.
- No observed performance to compare with numerical model predictions.
- Deformations considered valid only for Post-Earthquake Limit Equilibrium FS > 1.0.
- Often dealing with gravels, use BPT.

BCH Approach

- Probabilistic analysis for MCE.
- Incorporate variability in input parameters.
- Do employ numerical modeling.

Comparison of Approaches

Comparison of Criteria Proposed by Various Agencies.					
	USACE	USBR	FERC	CADWR	BCH
Basis for MCE	Determin -istic	Both	Determin -istic	Determin -istic	Probabil -istic
Total or Effective	Effective	Total	Effective	Total	Total
Safety Factor	>1.0 ¹	1.05 to 1.20 ²	>1.0	>1.0	>1.0
Newmark or Num. Modeling	Both	Both	Newmark	Newmark	Both

¹Exceptions made on a case by case basis.

²SF=1.20 is applicable when best estimate of post-earthquake strengths. SF=1.05 is used for worst case estimate of post-earthquake strengths.

Summary

- Challenging and Inexact Analyses
- Owners vs. Regulators
- Probabilistic vs. Deterministic
 - Selecting Ground Motion
 - Quantifying Loss of Life
 - Evaluating Risk Among Different Structures
 - Evaluating Critical Failure Modes
- Deformation Analyses vs. Observed Performance

Speaker Information

Jeffrey S. Dingrando, PE, PG Fuller, Mossbarger, Scott and May Engineers, Inc. 1409 North Forbes Road Lexington, Kentucky 40511 Phone: (859) 422-3000 Fax: (859) 422-3100 E-mail: jdingrando@fmsm.com

