An Overview of Criteria Used by Various Organizations for Assessment and Seismic Remediation of Earth Dams

2005 Tri-Service Infrastructure Systems Conference and Exhibition

St. Louis, Missouri
Presentation Overview

- Purpose
- Background
- Issues
- Approach to This Study
- Interpretation by Various Agencies
- Comparison of Agency Criteria
- Summary
Purpose of This Study

- How do you assess liquefaction?
- How do you assess resulting deformations?
- How do you adequately remediate for predicted seismic damage?
- What do USACE guidance documents suggest?
- What do other dam safety entities suggest?
Purpose of This Study

Dewey Dam
Big Sandy River Basin
Prestonsburg, Kentucky
USACE Huntington District
Purpose of This Study

What qualifies as failure?
What level do I remediate to?

Seasonal Pool Elev. 650'
Elev. 718'
Clay
Sands and Silts
Filter Blanket
Rock Toe
Zones Susceptible to Liquefaction - MCE
The Issues

- Liquefaction Triggering Potential
- Residual Soil Strengths and Post-Earthquake Stability
- Expected Permanent Deformations
- Adequacy of Solution (i.e., assessing risk)

Complex Failure Mechanisms +
Sensitive Response to Input Parameters +
Risk of Catastrophic Failure +
Huge Remediation Costs =
A Challenging Problem
Liquefaction Triggering

FS = \frac{\text{Cyclic Resistance Ratio, CRR}}{\text{Cyclic Stress Ratio, CSR}}

\begin{align*}
\text{CRR} &= \left(\frac{\tau}{\sigma_v'_{\text{Liquefy}}} \right)_{\text{Liquefy}} \\
\text{CSR} &= \left(\frac{\tau}{\sigma_v'_{\text{Loading}}} \right)_{\text{Loading}}
\end{align*}

\{ \text{Same Density & No. of Load Cycles} \}
FS = \frac{CRR}{CSR} \times MSF \times K_\alpha \times K_\sigma

MSF = \text{Magnitude Correction}

K_\sigma = \text{Confinement Correction}

K_\alpha = \text{Shear Stress Correction}

FS = \frac{0.22}{0.15} = 1.5 \times \ldots
Liquefaction Triggering

ASCE, JGGE, 10/2001
Residual Soil Strengths

![Graph showing residual soil strengths with curves indicating upper and lower bounds by Baziar & Dabry and Seed & Harder.](image)

- **Residual Shear Strength (psf)**
- **Upper Bound**
 - Baziar & Dabry
 - Seed & Harder
- **Lower Bound**
 - Baziar & Dabry
 - Seed & Harder

- **Axes:**
 - **(N_{1})_{60} (blows/foot)**
 - **Residual Shear Strength (psf)**
Permanent Deformations

Newmark’s Method or Numerical Modeling?
Judging Adequacy of Analyses or Designs

Target Safety Factor = ?

Elev. 718’

Seasonal Pool Elev. 650’

Rock Toe

Filter Blanket

Tolerable Deformation = ?

25’

Elev. 718’

30’

Seasonal Pool Elev. 650’

Rock Toe

Filter Blanket
Approach to This Study

• Research how USACE and other agencies address the following:
 – Liquefaction Triggering Assessment
 – Liquefied Soil Residual Strength Assessment
 – Permanent Deformation Assessment
 – Adequacy Assessment for Existing or Remediated Structure
• Interviews, Review of Guidance Documents and Other Publications
• Current as of 2001
The Agencies

- U.S. Army Corps of Engineers (USACE)
- U.S. Bureau of Reclamation (USBR)
- Federal Energy Regulatory Commission (FERC)
- California Department of Water Resources (CADWR)
- British Columbia Hydro (BCH)
Criteria of Various Agencies

USACE

Owners

BCH
Transition to Risk Based Approach

USBR

Deterministic

Regulators

FERC

CADWR
USACE Approach

Phase II Special Study

- Gather required data.
- Deterministic analysis for MCE.
- Complete liquefaction analyses.
- Establish post-liquefaction strengths.
- Perform static limit equilibrium (LE) analyses.
- Perform finite element (FE) deformation analyses.
- Use LE and FE to evaluate remediation alternatives.
USBR Approach

• Incorporating risk based methodologies.
 – MCE (Probabilistic or Deterministic)
 – Potential fatalities
 – Confidence in data

• Ground motion frequency content "matched" to structure

• Use total stresses to evaluate liquefaction potential.

• Require higher post-earthquake LE safety factors.

• Remediate based on probability and consequences of failure.
FERC Approach

- Deterministic analysis for MCE.
- Low confidence in numerical modeling, relying on Newmark type analyses.
- Deformations limited to 2 feet (some exceptions).
- Deformations considered valid only for Post-Earthquake Limit Equilibrium FS > 1.0
CADWR Approach

- Deterministic analysis for MCE.
- Low confidence in numerical modeling, relying on Newmark type analyses.
- No observed performance to compare with numerical model predictions.
- Deformations considered valid only for Post-Earthquake Limit Equilibrium FS > 1.0.
- Often dealing with gravels, use BPT.
BCH Approach

• Probabilistic analysis for MCE.
• Incorporate variability in input parameters.
• Do employ numerical modeling.
Comparison of Approaches

Comparison of Criteria Proposed by Various Agencies.

<table>
<thead>
<tr>
<th></th>
<th>USACE</th>
<th>USBR</th>
<th>FERC</th>
<th>CADWR</th>
<th>BCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis for MCE</td>
<td>Deterministic</td>
<td>Both</td>
<td>Deterministic</td>
<td>Deterministic</td>
<td>Probabilistic</td>
</tr>
<tr>
<td>Total or Effective</td>
<td>Effective</td>
<td>Total</td>
<td>Effective</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Safety Factor</td>
<td>>1.0(^1)</td>
<td>1.05 to 1.20(^2)</td>
<td>>1.0</td>
<td>>1.0</td>
<td>>1.0</td>
</tr>
<tr>
<td>Newmark or Num. Modeling</td>
<td>Both</td>
<td>Both</td>
<td>Newmark</td>
<td>Newmark</td>
<td>Both</td>
</tr>
</tbody>
</table>

\(^1\)Exceptions made on a case by case basis.

\(^2\)SF=1.20 is applicable when best estimate of post-earthquake strengths. SF=1.05 is used for worst case estimate of post-earthquake strengths.
Summary

- Challenging and Inexact Analyses
- Owners vs. Regulators
- Probabilistic vs. Deterministic
 - Selecting Ground Motion
 - Quantifying Loss of Life
 - Evaluating Risk Among Different Structures
 - Evaluating Critical Failure Modes
- Deformation Analyses vs. Observed Performance
Speaker Information

Jeffrey S. Dingrando, PE, PG
Fuller, Mossbarger, Scott and May Engineers, Inc.
1409 North Forbes Road
Lexington, Kentucky 40511
Phone: (859) 422-3000
Fax: (859) 422-3100
E-mail: jdingrando@fmsm.com