Internal Erosion \& Piping at Fern Ridge Dam

Jeremy Britton
U. S. Army Corps of Engineers
Portland District

Project Location

Fern Ridge Project

FERN RIDGE DAM

TWO PROBLEMS

1) Internal Erosion \& Piping

- Current Repair

2) Liquefaction in the Foundation Silty Sand

OBSERVATIONS OF DISTRESS IN LAST 3 YEARS

Depressions on downstream slope (3)

- $5-20 \mathrm{ft}$ in diameter, $8-12$ inches deep

Spikes in lateral drain flows during rain events

- Normal summer flows: trickle to 4 gpm *
- Heavy rains cause spikes of up to 10 gpm

Sediment transport in lateral drains

- Several drains carry clay, silt, and sand
- * Sta. 45: normal flow = 7-10 gpm; 5-10 lbs per month accumulating behind weir [15% organics, 55% fines (MH), 30% sand]

Main drain

Station 50
Lateral drain

Sediment accumulated between
9/02 and 1/04 video inspections (16 months)

Dirty water flowing into CMP

U.S. Standard Sieves

Selected borrow pit gravel

$3 / 8$ " to 2 " Washed gravel

Lateral drain coupling band

$3 / 8 "$ to $2 "$
 Washed gravel

Original design flow net drawn by Cedergren in 1940

FEM seepage analysis of existing conditions: $i \approx 1$ at toe of disposal zone

Piping in Foundation Silty Sand

Foundation seepage to Kirk Pond

Piping in Foundation Silty Sand

Piping in Foundation Silty Sand

Flow rate increases due to shortening flow path

Piping in Foundation Silty Sand

Pipe reaches lake. Flow rate and erosion accelerate rapidly

Event Alert System

Senior Review Board (12/04)

- Francke Walberg, URS (retired from Corps)
- Jim Talbot, retired from SCS
- Keith Ferguson, Kleinfelder
$>$ "Active state of failure by piping and/or internal erosion"
$>$ "District's focus should be immediately shifted from investigations and evaluation to development and implementation of corrective actions"

Station 14+40
At Pool ster 373.5 (Max, Cons. Pool)

PROJECT BENEFITS

Flood Control

- $\$ 400 \mathrm{M}$ in damages prevented over 60 years
- \$80M in 1996 flood
- Over \$40M in 1997 and 1999 floods

Irrigation (Annual Benefit)

- Direct: $\$ 165 \mathrm{k}$ (water service contracts)
- Indirect: $\$ 1.5 \mathrm{M}$ to $\$ 2.9 \mathrm{M}$ (agricultural products)

PROJECT BENEFITS

Recreation (Sailing, Marinas, Campgrounds)

-600,000 visitors per year

- $\$ 5 \mathrm{M}$ in local benefits, $\$ 3.5 \mathrm{M}$ in indirect benefits

Environmental

- Sect. 1135 restoration projects, Waterfowl nesting habitat, Warm water fisheries, Shoreline riparian habitat

SCHEDULE

- Senior review board
- Decision to repair
- Awarded contract
- Construction began
- Complete main construction
- Be ready for flood control season

Dec 2004
Feb 10, 2005
May 13, 2005
June 1, 2005
Oct 15, 2005

Nov 1, 2005

Design Goals

- Constructible in 5-6 months
- Remove failing drainage system and repair any small voids/erosion channels (if we have to repair large features, construction will exceed 6 months)
- New drain: collect embankment and foundation seepage
- Leave room for a potential seismic repair

