Topics

- HEC-HMS
 - Version 3.0
 - Concepts
 - Data Components
 - Simulation
 - Results
HEC-HMS Version 3.0

- **Initial Release**
 - New User Interface - JAVA
 - Snow Accumulation and Melt
 - Depth-Area Storm Event Analysis
 - Evapotranspiration

- **Under Development**
 - Interior Flooding Capabilities
 - Land Surface Wash-off
New User Interface - JAVA

- Finished Java Conversion
 - Converted Entire Existing Engine with Data Model and Simulation Components from C++, Galaxy to Java
 - Scraped Old Interface in Favor of New Design
 - Easy to Learn
 - More Flexible for Configuring Data and Viewing Results
 - Faster to Use Because it Anticipates User Needs
 - Similar in Layout to Other Engineering Software
- New Interface Design Complete
- Beta Testing in Progress
 - Approximately 60 testers
 - Several International
 - Testing Complete August 26th
HMS Provides

- Tool kit of options
 - Basin Parameters
 - Parameter estimation (optimization)
- Graphical user interface
 - Select-and-add icons
 - Graphical and tabular displays
- Multiple operating system support
 - Windows, UNIX
HMS Version 3.0

Watershed Explorer

Basin Map

Component Editor

Message Pane
Watershed Explorer

- List All Project Components
- Expand Multiple Components
- List All Elements
- Icon Shows Element Type
- Direct Access to Methods
- Selected Element Highlighted on Map
- Right Click Menu

HEC
Basin Map

- Georeferenced
- Shows all elements
- Make any Element Active
- Zoom In and Out
- Right Click Menu
- View Results
Component Editor

- Editors for all Elements
- Automatically Reflects Selected Element
Message Pane

- Instant Feedback
- Lists errors
- Tracks Current Execution

NOTE 10179: Opened basin model "Kahuku_Clarke" at time 06 May 2005, 19:41:36.
HEC-HMS Project

- Container for components
 - Basin model
 - Gage and paired data
 - Gridded data
 - Meteorologic model
 - Control specifications
- Analysis methods
 - Simulation
 - Parameter estimation (optimization)
 - Depth-Area
HEC-HMS Project Components
Basin Models
Basin Model Types

- Area Averaged
 - Parameters apply to entire subbasin
- Gridded (GeoHMS)
 - ModClark Transform
 - Gridded Precip
 - HRAP, SHG
 - Grid Cell File
Basin Model Elements

- **Subbasin** - *Watershed Catchments*
- **Reach** - *Rivers and Streams*
- **Reservoir** - *Dams and Lakes*
- **Junction** - *Confluence*
- **Diversion** - *Bifurcations and Withdrawals*
- **Source** - *Springs and other Model Sinks*
- **Sink** - *Outlets and Terminal Lakes*
Subbasin Element Loss Parameter

- Loss Methods
 - Initial and Constant
 - Deficit and Constant
 - Evapotranspiration
 - Green and Ampt
 - Gridded Deficit Constant
 - Gridded SCS Curve Number
 - Gridded SMA
 - SCS Curve Number
 - Soil Moisture Accounting
Subbasin Element

- Editor

Name: Bakanan Local

- Description:
- Downstream: Bakanan Outlet
- Area (MIL): 0.581000
- Loss Method: Initial and Constant
- Transform Method: Snyder Unit Hydrograph
- Baseflow Method: Recession
Subbasin Element Transform Parameter

- Transform Methods
 - Clark UH
 - Kinematic wave
 - ModClark
 - Snyder UH
 - SCS UH
 - User-specified S-graph
 - User-specified UH
Subbasin Element Baseflow Parameter

- Baseflow Methods
 - Bounded Recession
 - Constant monthly
 - Linear reservoir
 - Recession
Reach Parameters

- Routing Methods
 - Kinematic Wave
 - Lag
 - Modified Puls
 - Muskingum
 - Muskingum-Cunge
 - Straddle-Stagger
Reservoir Parameters

- Reservoir Methods
 - Simplified Routing
 - Storage-Outlet
 - Elevation-Storage-Outlet
 - Elevation-Area-Outlet
 - Detailed Routing
 - Elevation-Storage
 - Elevation-Area
 - Outlet
 - Spillway
 - Overflow
 - Dam Failure
Additional Elements

- Junction
- Diversion
- Source
- Sink
Global Editors
Global Editors
Meteorological Models
Met Model Choices

- Precipitation
 - Frequency storm
 - Gridded precipitation
 - Inverse-distance gage weighting
 - Standard project storm
 - User hyetograph
 - User-specified gage weighting
Met Model Editor

- **Reflects Model Type**

Meteorology Model

<table>
<thead>
<tr>
<th>Name: Freq1</th>
<th>Basin Model</th>
<th>Include Subbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basin 1</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Kahului</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Kahului_Carls</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Kahului_Rare</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Kukulu_1996</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Basin 2</td>
<td>No</td>
</tr>
</tbody>
</table>

Precipitation

<table>
<thead>
<tr>
<th>Name: Freq1</th>
<th>Probability</th>
<th>Series Type</th>
<th>Intensity Duration</th>
<th>Storm Duration</th>
<th>Intensity Position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2 Percent</td>
<td>Annual Duration</td>
<td>5 Minutes</td>
<td>1 Hour</td>
<td>50 Percent</td>
</tr>
</tbody>
</table>

Evapotranspiration

- None

Snowmelt

- None

Unit System

- U.S. Customary
Evapotranspiration
- Priestly-Taylor
 - Crop Coefficient
 - Solar Radiation
 - Temperature
- Gridded P-T
- Monthly Average
 - Pan Coeff.
 - Rate

Components	Compute	Results

Meteorology Model

<table>
<thead>
<tr>
<th>Name: Freq1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Precipitation: Frequency Storm</td>
</tr>
<tr>
<td>Evapotranspiration: Priestly-Taylor</td>
</tr>
<tr>
<td>Snowmelt: None</td>
</tr>
<tr>
<td>Unit System: Gridded Priestly-Taylor</td>
</tr>
</tbody>
</table>

500-Year R-73
- Frequency Storm
- Bakahan Local
- Priestly-Taylor
- High School Trib
- Hospital Ditch
- Kalaeokaahina Stream
- Keaaulu Gulch
- Kii Local A
- Kii Local B
- Kii Local C
- Kii Local D
- Ohia Gulch
- Nov 1996

SPS
Met Model Editor

- Snowmelt
- Temperature Index
- Gridded Temp Index
Control Specifications
Time Series Data

- Types
 - Precipitation
 - Discharge
 - Temperature
 - Solar radiation
 - Crop Coefficient
Paired Data

- Types
 - Storage-Outlet
 - Elevation Storage
 - Elevation-Area
 - Elevation-Discharge
 - Inflow-Diversion
 - Cross Sections
 - Unit Hydrograph
 - S-Graph
 - ATI Meltrate
 - ATI Coldrate
 - Groundmelt Patterns
 - Evaporation Patterns
 - Meltrate patterns
Gridded Data

- **Types**
 - Precipitation
 - Temperature
 - Solar radiation
 - Crop Coefficient
 - Storage Capacity
 - Percolation
 - Storage Coefficient
 - Moisture Deficit
 - Impervious Area
 - SCS Curve Number
 - Elevation
 - Cold Content
 - Cold Content ATI
 - Meltrate ATI
 - Liquid Water Content
 - Snow Water Equivalent

- **Data Source always DSS**
Model Computations

- Simulation
- Optimization
- Depth-Area Analysis
Simulation

Simulation Run
- Name: Hyp 50-Year
 - Description: Basin: Kahuku_Rare & Met: 50-Year & Control: Hyp Flood
 - Basin Model: Kahuku_Rare
 - Meteorologic Model: 50-Year
 - Control Specifications: Hyp Flood

Create Simulation Run
- Select Run
- Run Manager
- Create Optimization Trial
 - Select Trial
 - Trial Manager
- Create Analysis
 - Select Analysis
 - Analysis Manager
 - Compute Run [Hyp 50-Year]
Optimization

- Observed Data
- Existing Simulation
Depth-Area Analysis

- Based on Existing Simulation
- Frequency Storm Met Model
Depth-Area Analysis

- Frequency Storm Application Basis for Many Planning Studies
- Multiple Evaluation Locations Almost Always Necessary
- New Tool Provides Semi-Automated Analysis at Multiple Evaluation Locations
- Will Reduce Errors from Improperly Applied Storms
- Reduce Time to Evaluate Multiple Locations
Simulation Results – Basin Map

- Based on Last Compute
 - For Selected Element
 - Graph
 - Summary Table
 - Time Series table
 - Preset Graphs, Tables
 - Based on Element
Simulation Results – Results Tree

- Valid Results Enabled
- Compare Multiple Runs
- Plot in Preview Window
- Expand to Large Plot

![Diagram showing results tree with items such as Bakahan Local, Flow (CF/s), and various hypotetical events showing plots and summaries.](Image)
HEC-HMS Web Access

- Download HEC-HMS from HEC Website
- Beta Version HMS 3.0
 - Released and in test phase
- 2003 Statistics
 - 37,000 Downloads
 - 93 Countries
Contact Info

- Jeff Harris
- US Army Corps of Engineers
 Hydrologic Engineering Center
 609 2nd Street
 Davis, CA 95616
 530-756-1104
 david.j.harris@usace.army.mil