

HH&C, Track 4, Session 4G, Modeling, 1:30 pm Aug. 4

- Rick D. Ackerson
- Hydraulic Engineer
- U.S. Army Corps of Engineers
- Chicago District
- → 111 N. Canal St.
- Chicago, IL 60606
- ► Phone: (312)-846-5511
- e-mail: <u>rick.d.ackerson@usace.army.mil</u>
- -> Fax:(312)-353-2156

Little Calumet River Unsteady Flow Model Conversion UNET to HEC-RAS

Rick D. Ackerson
Hydraulic Engineer
U.S. Army Corps of Engineers
Chicago District

Chicago District

Little Calumet River, Indiana Flood Control and Recreation Project

Little Calumet River

Source: Openlands Project

Project Description Little Calumet River, Indiana

- Construct 22 miles of new urban levees
- Provides 200 year level of flood protection
- Construct 17 miles of hiking trails
- Fish and Wildlife mitigation 550 acres of wetland
- Local Sponsor: Little Calumet River Basin
 Development Commission
- Authorization: WRDA 1986

US Army Corps History of the Little Cal Models of Engineers Chicago District

- I991 Little Cal UNET model constructed from existing 1970's vintage HEC-2 and WSP-2 models HEC-1 was used to develop inflows
- 1995 Deep River reach extended. Model recalibrated
- 2002 Model converted from specialized Dr. Barkau version to the HEC version of UNET
 Updated to Bulletin 70/71 precipitation from TP-40 and recalibrated
- 2005 HEC-UNET converted to HEC-RAS Updated special bridges to more detailed bridges

Reasons for Model Conversions

• 2002 specialized UNET to HEC-UNET

- To update to the more standard Bulletin 70/71 precipitation
- To update to the more accepted standard HEC-UNET (specialized version did not run on the Windows platform)

• 2005 - HEC-UNET to HEC-RAS

- City of Gary requested new floodway mapping to reflect the Corps levee construction to date
- FEMA requested conversion for ease of review and ease of floodway determination
- State of Illinois showed interest in new floodway mapping to reflect the impacts of the new Thornton reservoir

Various Uses for Little Calumet River Model

- Design Levee Height Superiority Analysis
- To determine impacts of various project features
- To develop the flood warning plan
- To determine the impact of staged construction
- To develop updated floodplain mapping for the city of Gary
- To develop updated floodplain mapping in Illinois

Advantages of Unsteady US Army Corport Chicago Distr Flow Model versus Steady State Modeling

Flow Reversals
Flow Splits
Backwater Impacts
Preferred channel routing technique for very flat channels

- 7 reaches
- 50.3 miles of river
- 493 cross sections
- > 85 bridges
- 54 storage areas
- 4 inline structures
- 93 lateral connections
- > 18 interconnections between storage areas

- → HEC-DSS for Flow and Stage Hydrograph Storage
- ✤ Rating Curves at the Cal-Sag and 10 year level at Lake Michigan
- ✤ Inflow Hydrographs at Thorn Creek, Hart Ditch, Deep River and East Arm Little Calumet River

- Extensive high water data for 1989 and 1990 flood events
- ✤ Flow measurements during 1989 and 1990 flood events
- ✤ Observed flow and stage for 5 gages
- → Observed stage for 2 gages
- ✤ Observed flow for 2 gages
- → Long period of record (40+ years) for gages to develop stage and flow frequency curves

990 Flow Hydrograph for Little Calumet River Gage at Munster

Hart Ditch Gage at Munster

1990 Maximum Water Surface for Little Calumet **River/Burns Ditch** US Arm of Engi Little Calumet River/Burns Ditch Maximum Water Surface 1990 Event

Project Conditions

Bridge improvements
Corps Levees
Hart Ditch Control Structure
Thorn Creek Reservoir
Cady Marsh Ditch Diversion Tunnel

Illinois Central Railroad Bridge

Illinois Central Bridge (UNET)

of Engineers

III Illinois Central Bridge (HEC-RAS)

of Engineers

Station (ft)

Calumet Expressway (UNET)

of Engineers

Calumet Expressway (HEC-RAS) ĨHĨ of Engineers **Chicago District** RS=10.8285 Upstream (Bridge) Legend 620 Ground Elevation (ft) 610 Ineff 600 Bank Sta 590 580⁻ 13000 12500 13500 RS=10.8285 Downstream (Bridge) 620 Elevation (ft) 610 600

13000 12500 13500 Station (ft)

590

580

- Automatic conversion did not work
- River miles renumbered (also channel relocation, differing river miles for project condition)
- Storage areas renumbered so reconnection and relabling required
- Linear Routing connections needed to be broken up
- Manual conversion of boundary condition file