National Shoreline Erosion Control Development & Demonstration Program

An Evaluation of Performance Measures for Prefabricated Submerged Concrete Breakwaters: Section 227 Cape May Point, New Jersey Demonstration Project

2.5 Year Results

Donald K Stauble - Engineer Research & Development Center, Coastal and Hydraulics Laboratory

J.B. Smith - Philadelphia District Randall A. Wise - Philadelphia District

Double-T Sill

S

Ε

С

Т

I

0

N

227

Enaineers

Innovative Shoreline Protection

DEMONSTRATION SITES

S

Е

С

0

N

227

National Shoreline Erosion Control Demonstration and Development Program

OBJECTIVES

S Е С т I 0 N 227

- 1) To evaluate the effectiveness of the two submerged structures in retaining sand on the beach as compared with unprotected groin compartments
- 2) Compare the effectiveness of the more costly Beachsaver Reef with the less costly Double-T Sill in retaining sand in groin compartments
- Evaluate ability of both structures to retain Beach Fill after placement

HISTORICAL SHORELINE CHANGE

CAPE MAY POINT SITE LAYOUT

Cell 8 Control

> Cell 7 Control

Cell 6 02 Double-T Sill

Cell 5 02 Beachsaver Reef 01 Rock & Gabion wall

> Cell 4 Control

> > Cell

Recent Shore Protection History: 1950's 9 Groins constructed 6/94 Cell 2,3 - Beachsaver Reef 1/01 Cell 3,4 - Beach fill 2001 Cell 5 - Rock & Gabion wall 9/02 Cell 5 - Beachsaver Reef w/ filter 10/02 Cell 6 - Double-T Sill 3/04 Cell 4 - Beach Fill 12/04 Cell 1-6 - Eco Res. Beach Fill

> Cape May Lighthouse

SECTION 227 PROJECT Cell 5 – Beachsaver Reef Cell 6 – Double-T Sill

Seawall

Cell 1

Rock

DOUBLE – T SILL

Prefabricated Concrete Sill

Units placed on sand (no filter cloth) At ~ -9 ft NAVD w/ crest at -6 ft at low water At ~ -2.7 m NAVD w/crest at -1.8 m at low water

MONITORING PROJECT PERFORMANCE

- Functional Performance
 - Sand Retention Volume Change Change in MHW Shoreline Position
- Economic Performance
 - Reduction in Renourishment Quantities Improve Protection & Lengthening Fill Cycle
 Improve Protection
 Reduce Uncertainty
 Reduce Costs
 - Structural Performance

Structural Stability - Change in Structure Crest Elevation Alongshore Integrity Depth of Scour

S

Е

С

т

0

N

227

PERFORMANCE CRITERIA

S

Ε

С

Т

0

N

227

- Functional Performance Sand Retention: A) Sand Volume
 B) Dry Beach Width
- A1. Structure successful if retains >30% sand volume than non-structured cell
- A2. Structure outperforms competing design if retains >30% sand volume
- B1. Structure successful if retains >30% dry beach width than non-structured cell
- B2. Structure outperforms competing design if retains >30% dry beach width
- Economic Performance A) Reduction in Renourishment Quantities

B) Lengthening Fill Cycle

- A1. Structure successful if average annual renourishment cost savings > average annual cost of structure
- A2. Structure outperforms competing design if incremental renourishment cost savings > incremental structure costs
- B1. Structure successful if average annual cost savings of longer renourishment cycle > average annual cost of structure
- B2. Structure outperforms competing design if incremental cost savings of longer renourishment cycle > incremental structure costs
- Structural Performance Structural Stability: A) Crest Elevation
 - B) Alongshore Integrity
 - C) Scour Depth
- A1. Elevation Criteria: Successful if average lowering of crest elevation < 0.31 m (1 ft)
- B1. Alongshore Integrity: Successful if no gaps form that result in localized sand loss through structure
- C1. Scour: Successful if average scour is < 0.61 m (2 ft)

FUNCTION PERFORMANCE - Volume Change

FUNCTION PERFORMANCE – MHW Shoreline Change

ECONOMIC PERFORMANCE – Construction Costs

Beachsaver Reef - 16 Aug to 25 Sep 02

≻5 weeks @cost of \$1,440/If

S

Е

С

Т

0

N

227

- 72 10-ft-long units covering 720 ft
- Filter cloth installation
- Excavation and fill required
- Placement of units w/ diver

Double-T Sill – 26 Sep to 2 Oct 02
>4 days @ cost of \$345/lf

22 30-ft-long units covering 660 ft

- NO Filter cloth installation
- Excavation and fill NOT required
- Placement of units w/ diver

(Cost of rock used in both cells to tie into groin tips not included in linear foot cost)

ECONOMIC PERFORMANCE -

S Е C T 0 N 227

Reduction in Renourishment Quantities & Lengthening Fill Cycle (Economic Performance/Life Cycle Cost Analysis)

Structures designed to act as a sill to retain sand within the groin compartment

2004 Cape May Meadows/Cape May Point Eco Restoration Project will document fill retention and extension of renourishment cycle time in cells with and without structures

<u>Purpose:</u> Relate engineering performance to economic costs <u>Goal:</u> Evaluate improved performance (benefits) in relation to investment (costs)

Based on present monitoring Anticipated savings in:

- Initial fill retention
- Longer renourishment intervals in cells with Beachsaver Reefs

BEACH FILLS –

Placed Cell 4 only - March 2004 To Protect Dune Base

- Upland Quarry
- Upland Cape May Canal Dredge Disposal Area

Placed 9,600 cu yd

4 months later

Post-fill: -16 ft shoreline retreat 48% volume remaining

1

Post-fill: +7 ft to –42 ft shoreline gain/retreat 100% to 79% volume remaining

STRUCTURAL PERFORMANCE – Structural Stability

Measure Crest Elevations of Both Structures w/ Total Station to determine:

- Change in Structure Crest Elevation
- Alongshore Integrity
- Depth of Scour

STRUCTURAL PERFORMANCE

BEACHSAVER REEF - SETTLEMENT

10/2002 to 4/2005

Area of most Settlement up to 4 ft (1.2 m) within 6 months

STRUCTURAL PERFORMANCE

10/2002 to 4/2005

DOUBLE T SILL - SETTLEMENT

GROIN COMPARTMENT CIRCULATION opposite tidal Flow based on ADCP current studies

Beachsaver Reef traps sand in compartment Double-T Sill submerged w/ no trapping

SUMMARY

S E C T I O N 227

227 Project constructed August - October 20022.5 Year Quarterly Monitoring Results Reported HereEco Restoration Project constructed December 2004

Preliminary Findings:

- Retention of sand greatest in groin compartments w/ Beachsaver Reefs even w/ settlement
- Double-T Sill vs. Beachsaver Reef
 - a) Could not be evaluated due to settlement of Double-T Sill
 - b) Settlement w/ Beachsaver Reef due to construction excavation
- Anticipated savings in retention of beach fill w/ Beachsaver Reefs

Cape May Point, NJ Demonstration Site

PRODUCTS

Accomplishments

2003 Journal of Coastal Research - Paper National Conference on Beach Preservation Technology – Paper

Coastal Structures'03 – 2 papers

2005 TR – Performance of Beachsaver Reef with Filter Blanket, and Double-T Sill at Cape May Point, New Jersey, Section 227 Demonstration site – First Year Monitoring Report

Future

Summary Report - Economic Performance/Life Cycle Cost Analysis for the Section 227 Cape May Demo Project Conference Papers – Waves/Current/Structure Interaction - Beach Fill Retention

TR – Performance of Beachsaver Reef with Filter Blanket, and Double-T Sill at Cape May Point, New Jersey, Section 227 Demonstration site – 2 Year Monitoring Report

S

Ε

С

т

I

0

N

227