Flood Fighting Structures Demonstration And Evaluation Program (FFSD)

Tri-Service Infrastructure Systems Conference August 3, 2005

US Army Corps of Engineers

Flood Fighting Structures Demonstration And Evaluation Program (FFSD)

- 1. Background
- 2. Product Selections
- 3. Laboratory Testing
- 4. Field Testing
- 5. Product Summaries
- 6. Remaining Work

US Army Corps of Engineers ERDC

Flood Fighting Structures Demonstration And Evaluation Program (FFSD) Authorization

2004 Energy and Water Development Bill

"The conferees therefore direct the Corps of Engineers to act immediately to devise real world testing procedures for Rapid Deployment Flood Wall (RDFW) and other promising alternative flood fighting technologies."

US Army Corps of Engineers

Product Selections Congressional Directive Rapid Deployment Flood Wall (RDFW)

US Army Corps of Engineers

Product Selections Standard for Comparison Sandbags

US Army Corps of Engineers

Product Selections

- 1. Develop Evaluation / Selection Criteria
- 2. Issue Solicitation for Technical Proposals
 - 9 Proposals Received
 - Categories Product Type
 - Impermeable Liner (with or without frame)
 - **Granular Filled Container**
 - **Water Filled Bladder**
- 3. Evaluate Proposals and Make Selections Based on Technical Merit

US Army Corps of Engineers

ERDC

Product Selections Competitive Technical Proposals Portadam

US Army Corps of Engineers

Product Selections Competitive Technical Proposals Hesco Bastion

US Army Corps of Engineers

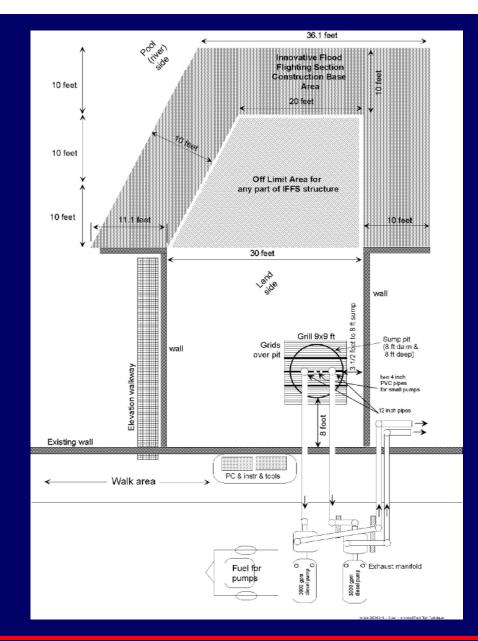
Evaluation Parameters

1. Product Requirements Footprint and ROW requirements Durability Ease of Construction and Removal **Time / Manpower/ Equipment** Adaptability to Varying Terrain Seepage **Fill Requirements** Cost **Repair and Reusability Ability to Raise During Flood**

2. Tests

Static Loading Overtopping Wave Impact Debris Impact

3. Performance on Various Surfaces Freshly Graded Grass / Weeds Finished Concrete



US Army Corps of Engineers

ERDC

Laboratory Testing

Construction Footprint

US Army Corps of Engineers

ERDC

Laboratory Testing

Sandbag Structure

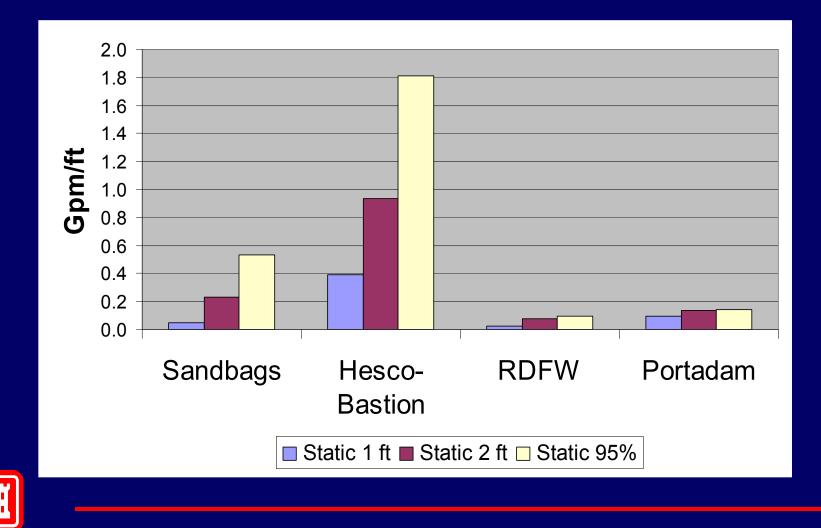
RDFW

US Army Corps of Engineers

Laboratory Testing Debris Impact

US Army Corps of Engineers

Laboratory Results


<u>Structure</u>	Construction Effort <u>(man hours)</u>	Removal Effort (man hours)
Portadam	24.4	4.4
Hesco	20.8	13.4
Sandbags	205.1	9.0
RDFW	32.8	42.0

ERDC

US Army Corps of Engineers

Laboratory Results Seepage

US Army Corps of Engineers

ERDC

Laboratory Results - Damage

Sandbag Structure Repeatedly damaged by waves Failed during overtopping

Hesco-Bastion

Minor sand settling and washout Wire bent during debris impact tests

US Army Corps of Engineers

Laboratory Results - Damage

RDFW

Minor sand settling Significant washout along edges and toe Toe damaged during large waves or overtopping 10% of structure broken

Portadam Liner torn during debris impact test

US Army Corps of Engineers ERDC

Field Testing Site Selection

US Army Corps of Engineers

Field Testing As Constructed

US Army Corps of Engineers

Portadam – As Delivered

US Army Corps of Engineers

Portadam Structure

US Army Corps of Engineers

Hesco Bastion – As Delivered

US Army Corps of Engineers

Hesco Bastion Structure

US Army Corps of Engineers

Hesco Bastion Installation Modification

US Army Corps of Engineers

Sandbag Structure

US Army Corps of Engineers

ERDC

RDFW – As Delivered

US Army Corps of Engineers

RDFW Structure

US Army Corps of Engineers

RDFW Post Testing Modifications

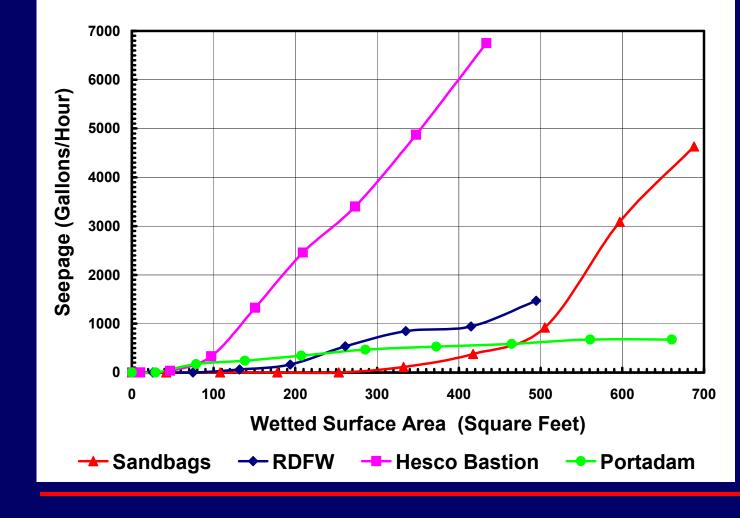
- Color Coded for Accurate Installation
- Rounded Corners

Suction Trailer Available to Expedite Removal

US Army Corps of Engineers

ERDC

Field Testing Construction and Removal


	Construction		Re	Removal	
<u>Structure</u>	Time <u>(hours)</u>	Effort <u>(man hours)</u>	Time <u>(hours)</u>	Effort <u>(man hours)</u>	
Portadam	5.1	26.2	2.9	12.6	
Hesco Bastion	8.9	57.5	8.7	36.3	
Sandbags	30.5	453.1	2.6	3.5	
RDFW	7.5	48.4	17.3	113.4	

ERDC

US Army Corps of Engineers

Field Testing Seepage

ERDC

US Army Corps of Engineers

Field Testing - Damage

Portadam

None - 100% reusable

Hesco Bastion

Bent some panels and coils Over 95% reusable

Sandbags

Bags began to deteriorate All sandbags disposed

RDFW

Broke some unit pieces 95% of pieces reusable

US Army Corps of Engineers

ERDC

Portadam Summary Strengths Ease of Construction / Removal (time, manpower, equipment) Low seepage rates No fill required High degree of reusability Least ROW required Weaknesses Punctured during debris impact test Can't be raised in typical application

US Army Corps of Engineers ERDC

Hesco Bastion Summary Strengths Ease of Construction / Removal (time & manpower) Low cost High degree of reusability Can be raised Weaknesses Significant ROW required due to granular fill **Highest seepage rates**

US Army Corps of Engineers

Sandbag Summary

Strengths Low Cost (volunteer / prison labor) Conforms well to varying terrain Low seepage rates Can be raised

> Weaknesses Very labor intensive Not reusable

US Army Corps of Engineers

RDFW Summary Strengths Ease of Construction (time & manpower) Low seepage rates High degree of reusability Can be raised Most height flexibility (8 inch units) Weaknesses Significant ROW required due to granular fill High cost **Difficult to remove**

US Army Corps of Engineers ERDC

Remaining Work

- 1. Place testing data and results on publicly accessible web page.
- 2. Conduct pilot tests at 3 locations around the country. Philadelphia / Baltimore Districts Omaha District Sacramento District
- 3. Use purchased products in actual flood events.

US Army Corps of Engineers ERDC

Pilot Testing Omaha District - Missouri River

As Installed

July 2005

US Army Corps of Engineers

Use During Actual Flood Iron County, Utah

Removal July 2005

US Army Corps of Engineers

Installation

May 2005

Flood Fighting Structures Demonstration And Evaluation Program (FFSD)

US Army Corps of Engineers

Contact Information

Fred Pinkard

(601) 634-3086

U.S. Army Corps of Engineers Engineering Research and Development Center Coastal and Hydraulics Lab Vicksburg, MS

Fred.Pinkard@erdc.usace.army.mil

US Army Corps of Engineers ERDC