

Hydrologic and Hydraulic Contributions to Risk and Uncertainty Propagation Studies Robert E. Moyer, IV Hydraulic Engineer

NDIA Tri-Service Infrastructure

3 August 2005

Introduction

- Hydrologic and Hydraulic (H&H) Modeling determines flood levels where human and financial costs occur during events
- Uncertain H&H modeling parameters must be examined to determine risk for the flood reduction study
- Examples: flow rates, gauge record lengths, drainage areas, Manning's "n" values, coefficients of contraction and expansion and pier debris at bridges
- The final results of this analysis will describe the likelihood that an alternative will produce a degree of economic benefit and its probability of exceedance

Terminology

- Parameter A quantity in a function that determines the specific form of the relationship of known input and unknown output. Example Manning's "n"
- Parameter uncertainty Lack of complete knowledge or accuracy of the value of a parameter.
- Sensitivity Analysis Computation of the effect on the output of changes in input values or assumptions.
- Function uncertainty Lack of complete knowledge or accuracy of the form of a hydrologic or hydraulic function used in an application such as a flood damage reduction study.

EM-1110-2-1619

3 August 2005

NDIA Tri-Service Infrastructure Conference

Hydrological and Hydraulic Contributions to Risk and Uncertainty Studies

Hydrologic Uncertainty

Uncertainty with the Discharge – Probability Curve

Hydraulic Uncertainty

Uncertainty with the Stage – Discharge Function

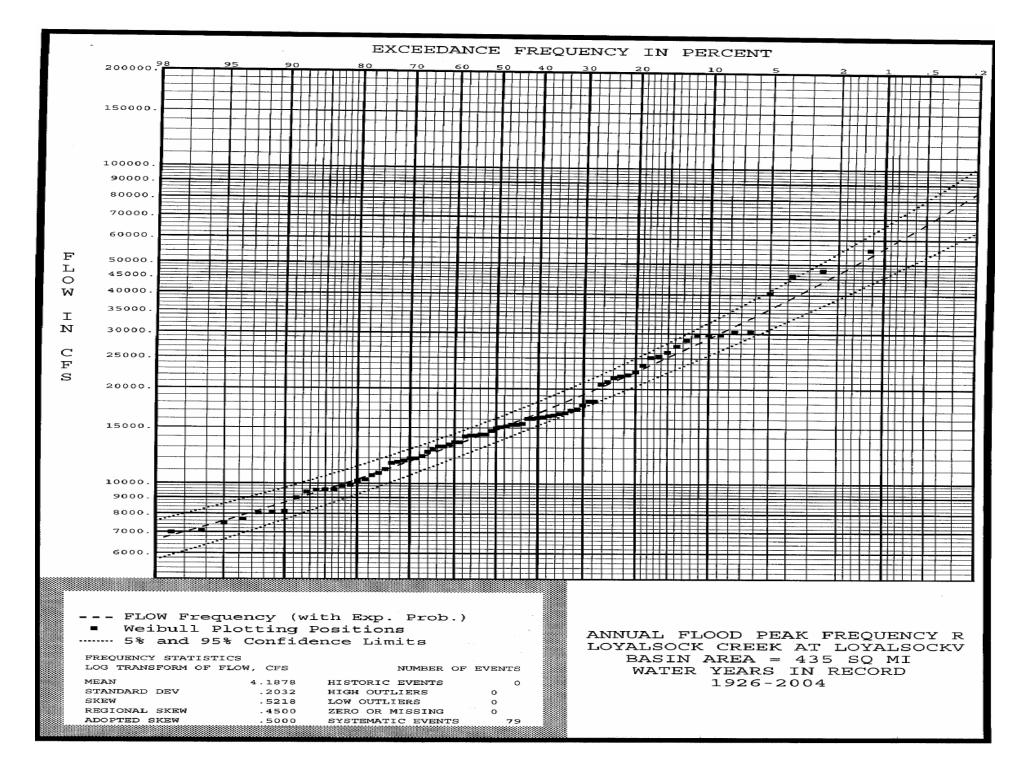
• Interior Flooding Uncertainty

Storm Runoff from the watershed that drains to the interior of a levee must be passed through or over the levee (EM-1110-2-1619). Performance of facilities like gravity outlets, pump stations, pump discharge outlets, collection facilities, storm sewers, and detention storage/flooding involves uncertainty

Hydrologic Uncertainty

- Flood damage reduction projects such as reservoirs, detention storage, diversions, levees, and channels affect the discharge –probability curve
- Therefore, an **uncertainty propagation** study must be performed

2 Methods to perform hydrologic uncertainty propagation study


Direct Analytical Approach

When a sample of stream gage data and annual peak discharge data are available and can be fit with a statistical distribution. Uncertainty is attributed primarily to the probability distribution

Analytical / Synthetic Approaches

When the discharge-frequency function is derived from methods such as transfer, regression, empirical equations, and modeling simulations.

The example case in Montoursville, Pennsylvania used a **regional transfer** approach for hydrologic uncertainty

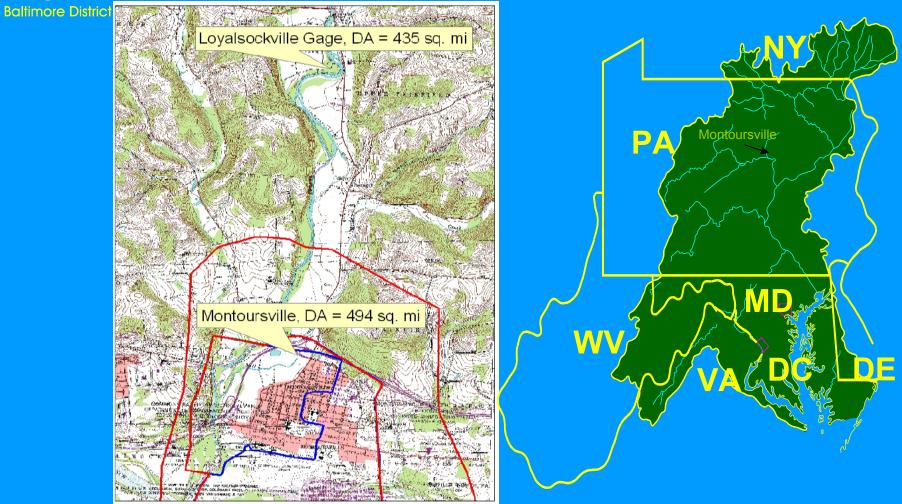

of Engineers Baltimore District **Analytical Approaches**

Table 4-1 Procedures for Estimating Discharge-Probability Function Without Recorded Events (adapted from USWRC (1981)) Method Summary of Procedure Transfer Discharge-probability function is derived from discharge sample at nearby stream. Each quantile (discharge value for specified probability) is extrapolated or interpolated for the location of interest. Regional estimation of Discharge-probability functions are derived from discharge samples at nearby gauged locations. Then individual quantiles or of the function parameters or individual quantiles are related to measurable catchment, channel, or climatic characteristics via regression analysis. The resulting predictive equations are used to estimate function parameters function parameters or quantiles for the location of interest. **Empirical equations** Quantile (flow or stage) is computed from precipitation with a simple empirical equation. Typically, the probability of discharge and precipitation are assumed equal. Hypothetical frequency events Unique discharge hydrographs due to storms of specified probabilities and temporal and areal distributions are computed with a rainfall-runoff model. Results are calibrated to observed events or discharge-probability relations at gauged locations so that probability of peak hydrograph equals storm probability. Continuous simulation Continuous record of discharge is computed from continuous record of precipitation with rainfall-runoff model, and annual discharge peaks are identified. The function is fitted to series of annual hydrograph peaks, using statistical analysis procedures.

Analytical Approach: Regional Transfer

US Army Corps of Engineers

Montoursville, Pennsylvania

3 August 2005

NDIA Tri-Service Infrastructure Conference

Analytical Approach: Regional Transfer

US Army Corps of Engineers Baltimore District Montoursville, Pennsylvania

- The flood frequency analysis from nearby Loyalsockville was available, but was located 5 miles upstream of Montoursville
- The drainage area ratio below was used to transfer the flows

$$\left(\frac{Q_M}{Q_L}\right) = \left(\frac{DA_M}{DA_L}\right)^{0.733}$$

, where the subscript M represents Montoursville and L represents Loyalsockville

• The results of the study below show the record length from Loyalsockville was reduced from 79 to 71 years.

Analytical Approach: Regional Transfer

US Army Corps of Engineers Baltimore District

Montoursville, Pennsylvania

Montoursville L	.ocal Flood Prot	ection Project	Hydrolog	gic Routing	rem	
		-	-	Ī		
	20-Mar-03	Study		11-Feb-05	Study	
		-			-	
Recurrance	Loyalsockville	Montoursville		Loyalsockville	Montoursvi	lle
Interval	Rte. 973			Rte. 973		
Drainage Area	435	494		435	494	
(sq. miles)						
1-year				6000	6559	
2-year				14800	16178	
5-year				22600	24704	
10-year	28500	31154		28900	31591	
20-year	35400	38696		36000	39352	
25-year				38500	42085	
50-year	45900	50174		46900	51267	
100-year	55300	60449		56500	61761	
500-year	83100	90838		85000	92915	
lvan				40500	44271	
Agnes				47900	52360	
Hydrologic Ris	k and Uncertain			15-Jul-05		
Montoursville F	low is	114	percent o	of Loyalsockvill	e's Flow	
	Montoursville E e			gth is about	90	
percent of Loya	alsockville's sys	tematic record	l length,	79		
which equals	71					

Analytical Approach: Regional Transfer

Montoursville, Pennsylvania

Method of Frequency Function Estimation	Equivalent Record Length ¹
Analytical distribution fitted with long-period gauged record available at site	Systematic record length
Estimated from analytical distribution fitted for long-period gauge on the same stream, with upstream drainage area within 20% of that of point of interest	90% to 100% of record length of gauged location
Estimated from analytical distribution fitted for long-period gauge within same watershed	50% to 90% of record length
Estimated with regional discharge-probability function parameters	Average length of record used in regional study
Estimated with rainfall-runoff-routing model calibrated to several events recorded at short-interval event gauge in watershed	20 to 30 years
Estimated with rainfall-runoff-routing model with regional model parameters (no rainfall-runoff-routing model calibration)	10 to 30 years
Estimated with rainfall-runoff-routing model with handbook or textbook model parameters	10 to 15 years

experience with similar studies.

Hydraulic Uncertainty

- Uncertainties exist with stage-discharge functions because of measurement errors, the use of numerical models, and the inability of these models to exactly reproduce the complex nature of hydraulics. Therefore, uncertainty propagation studies must be performed for hydraulic parameters
- Hydraulic uncertainties are also handled differently for gaged reaches and ungaged reaches

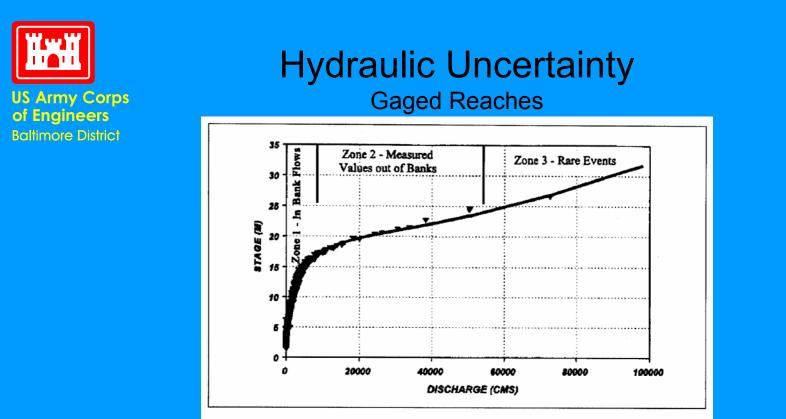


Figure 5-1. Stage-discharge plot showing uncertainty zones, observed data, and best-fit curve

The standard deviation defined by stage residuals determines the uncertainty for gauged reaches due to the nature of how the observed points fit the selected probability distribution.

Hydraulic Uncertainty Ungaged Reaches

• For Ungaged reaches, uncertainty can be approximated from the Gamma Distribution. Figure 5-3 Below shows how this is done

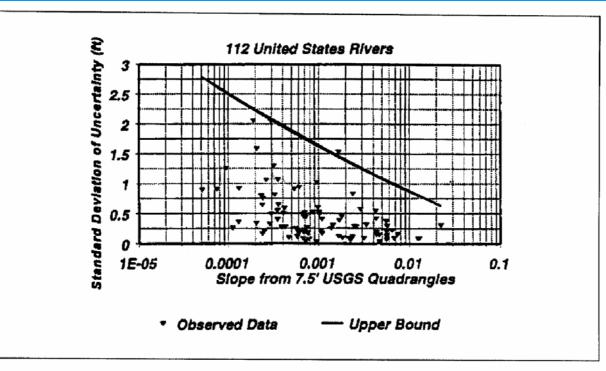


Figure 5-3. Stage-discharge uncertainty compared with channel slope from USGS 7.5-in. quadrangles, with upper bound for uncertainty

NDIA Tri-Service Infrastructure Conference

Hydraulic Uncertainty Ungaged Reaches

- For many ungaged areas, the hydraulic analysis is performed by computing water surface profiles. Uncertainties arise from the model's parameters.
 For the Montoursville case, uncertainties with Manning's "n" values, pier debris at bridges, and contraction/expansion coefficients were computed.
- A "Low Risk", an "Expected Risk", and a "High Risk" HEC-RAS model was produced for the Loyalsock Creek in Montoursville. Arbitrary increases in coefficients and parameters based on previous studies in the Baltimore District were chosen.
- The next slide shows the chosen parameters for the Montoursville hydraulic risk and uncertainty contribution

Hydraulic Uncertainty Ungaged Reaches – Montoursville Study

HEC-RAS Model Parameters for Low, Expected, and High Risk Scenarios

Coefficients of Contraction and Expansion

Location	Low	Expected	<u>High</u>
ContractionChannel	0.1	0.1	0.3
Bridge XS	0.3	0.3	0.5
Expansion Channel	0.3	0.3	0.5
Bridge XS	0.5	0.5	0.8

Pier Debris at Bridges

	Low	Expected	<u>High</u>
Pier Width increase	0%	25%	50%
			(max. 3 ft)
Lowering of Bridge Deck	0 ft.	0.5 ft	1.0 ft

Manning's n in Channels / Overbanks

(Next Slide)

3 August 2005

NDIA Tri-Service Infrastructure Conference

Hydraulic Uncertainty Ungaged Reaches – Montoursville Study

Baltimore District

US Army Corps of Engineers

Montoursvi	lle LFPP: Risk	and Uncer	tainty Anal	ysis Mai	nning's n val	ues		Percent Cl	nange	15	%	
+- 5% diffe	rence for n valu	Jes										
				7.5	% Decreas	e				15	% Increase	1
Edit Manni	ng's n or k Val	ues			Low Risk		E	<pre>kpected Ris</pre>	k		High Risk	
	River Station			n #1	n #2	n#3	n #1			n #1	n #2	n#3
1				0.093	0.040	0.102	0.100	0.043	0.110	0.115	0.049	0.127
2	9802.355			0.093	0.040	0.102	0.100	0.043	0.110		0.049	0.127
3	9446.365			0.093	0.040	0.102		0.043	0.110		0.049	0.127
4	9038.917			0.093	0.040	0.102			0.110		0.049	0.127
5	8554.058			0.093	0.040	0.102	0.100	0.043	0.110		0.049	0.127
6	8122.26			0.093	0.040	0.102		0.043	0.110		0.049	0.127
7	7577.909			0.093	0.040	0.102		0.043	0.110		0.049	0.127
8	7219.518			0.093	0.040	0.102	0.100	0.043	0.110		0.049	0.127
9	6725.547			0.093	0.040	0.102		0.043	0.110		0.049	0.127
10	6326.275			0.093	0.040	0.102		0.043	0.110		0.049	0.127
11	6006.965			0.093	0.040	0.102	0.100	0.043	0.110		0.049	0.127
12	5715.366			0.093	0.040	0.102	0.100	0.043	0.110		0.049	0.127
13	5418.719			0.093	0.040	0.102		0.043	0.110		0.049	0.127
14	5207.008			0.093	0.040	0.102		0.043	0.110		0.049	0.127
15	4915.59			0.093	0.040	0.102		0.043	0.110		0.049	0.127
16	4703.012			0.093	0.040	0.102		0.043	0.110		0.049	0.127
17	4442.749			0.093	0.040	0.102	0.100	0.043	0.110		0.049	0.127
18	4187.805			0.093	0.040	0.102	0.100	0.043	0.110		0.049	0.127
19	3900.896			0.093	0.040	0.102		0.043	0.110		0.049	0.127
20	3713.969			0.093	0.040	0.102	0.100	0.043	0.110		0.049	0.127
21	3532.658			0.093	0.040	0.102		0.043	0.110		0.049	0.127
22	3276.832			0.093	0.040	0.102		0.043	0.110		0.049	0.127
23	3161.825			0.093	0.040	0.102	0.100	0.043	0.110		0.049	0.127
24	3040.741			0.093	0.040	0.102		0.043	0.110		0.049	0.127
25	2929.254	n		0.093	0.040	0.102	0.100	0.043	0.110	0.115	0.049	0.127
3 Aug	ust 2005			NDIA	Tri-Serv	vice Infra	structure	e			Slide	17

Conference

Hydraulic Uncertainty Ungaged Reaches – Montoursville Study

Baltimore District

US Army Corps of Engineers

Montoursville	e LFPP: Ris	k and Unc	ertainty Ana	alysis		Results / S	Standard De	eviation Cor	nputations	25-Mar-05	rem				
				-									Risk / Unc	ertainty Sta	itistics
				Low Risk				Expected	Risk		High Risk			Estimated	
													Stage	Standard	
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev		Q Total	Min Ch El	W.S. Elev	Q Total	Min Ch El	W.S. Elev	Difference		
			(cfs)	(ft)	(ft)		(cfs)	(ft)	(ft)	(cfs)	(ft)	(ft)	(ft)	(ft)	
Loyal main	10158.62	100 y	61761	525.93	540.04		61761	525.93	540.29	61761	525.93	540.97	0.93	0.23	
Loyal_main	9802.355	100y	61761	524.1	538.05		61761	524.10	538.49	61761	524.10	539.42	1.37	0.34	
Loyal_main	9446.365	100y	61761	522.19	537.05		61761	522.19	537.49	61761	522.19	538.41	1.36	0.34	
Loyal_main	9038.917	100 y	61761	520.17	536.42		61761	520.17	536.88	61761	520.17	537.77	1.35	0.34	
Loyal_main	8554.058	100 y	61761	520.38	535.95		61761	520.38	536.41	61761	520.38	537.30	1.35	0.34	
Loyal_main	8122.26	100 y	61761	519.59	535.54		61761	519.59	536.01	61761	519.59	536.92	1.38	0.34	
Loyal_main	7577.909		61761	516	534.47		61761	516.00	534.98	61761	516.00	535.90	1.43	0.36	
Loyal_main	7219.518	100 y	61761	515.78	533.32		61761	515.78	533.87	61761	515.78	534.80	1.48	0.37	
Loyal_main	6725.547		61761	515.12	531.41		61761	515.12	532.10	61761	515.12	533.11	1.70	0.43	
Loyal_main	6326.275		61761	514.14	529.61		61761	514.14	530.71	61761	514.14	531.88	2.27	0.57	
Loyal_main	6006.965		61761	513.31	529.22		61761	513.31	530.53	61761	513.31	531.75	2.53	0.63	
Loyal_main	5715.366		61761	512.56	529.24		61761	512.56	530.34	61761	512.56	531.54	2.30	0.57	
Loyal_main	5418.719		61761	511.8	529.25		61761	511.80	530.30	61761	511.80	531.48	2.23	0.56	
Loyal_main	5207.008		61761	506.86	529.38		61761	506.86	530.39	61761	506.86	531.51	2.13	0.53	
Loyal_main	4915.59		61761	502.43	529.25		61761	502.43	530.29	61761	502.43	531.38	2.13	0.53	
Loyal_main	4703.012	· · · · · · · · · · · · · · · · · · ·	61761	501.11	529.25		61761	501.11	530.26	61761	501.11	531.36	2.11	0.53	
Loyal_main	4442.749		61761	501.69	529.19		61761	501.69		61761	501.69	531.30	2.11	0.53	
Loyal_main	4187.805		61761	507.87	529.05		61761	507.87	530.12	61761	507.87	531.22	2.17	0.54	
Loyal_main	3900.896		61761	506.95	528.56		61761	506.95	529.73	61761	506.95	530.84	2.28	0.57	
Loyal_main	3713.969		61761	506.32	528.22		61761	506.32	529.47	61761	506.32	530.59	2.37	0.59	
Loyal_main	3532.658		61761	505.81	527.99		61761	505.81	529.29	61761	505.81	530.41	2.42	0.60	
Loyal_main	3276.832		61761	505.79	527.42		61761	505.79	528.86	 61761	505.79	529.98	2.56	0.64	
Loyal_main	3161.825		61761	505.76	527.44		61761	505.76	528.65	 61761	505.76	529.77	2.33	0.58	
Loyal_main	3040.741		61761	505.71	527.03		61761	505.71	528.37	61761	505.71	529.51	2.48	0.62	
Loyal_main	2929.254		61761	505.66	526.87		61761	505.66	528.18	 61761	505.66	529.31	2.44	0.61	
Loyal_main	2802.688	100 y	61761	505.6	526.72		61761	505.60	527.95	61761	505.60	529.08	2.36	0.59	

3 August 2005

NDIA Tri-Service Infrastructure Conference

Hydraulic Uncertainty Ungaged Reaches – Montoursville Study

US Army Corps of Engineers Baltimore District

Loyal_main	2619.493 100y	61761	505.28	526.58	61761	505.28	527.85		505.28	529.01	2.43	0.61	
Loyal_main	2504.836 100y	61761	504.83	526.45	61761	504.83	527.74	61761	504.83	528.91	2.46	0.61	
Loyal_main	2420.983 100y	61761	504.51	526.37	61761	504.51	527.66	61761	504.51	528.82	2.45	0.61	
Loyal_main	2219.247 100y	61761	499.78	526.3	61761	499.78	527.59	61761	499.78	528.71	2.41	0.60	
Loyal_main	2089.226 100y	61761	499.3	526.17	61761	499.30	527.47	61761	499.30	528.59	2.42	0.61	
Loyal_main	1862.067 100y	61761	503.38	526.07	61761	503.38	527.38	61761	503.38	528.46	2.39	0.60	
Loyal_main	1692	Bridge			Bridge			Bridge					
Loyal_main	1538.278 100y	61761	504.56	525.43	61761	504.56	526.77	61761	504.56	527.72	2.29	0.57	
Loyal_main	1462.307 100y	61761	502.39	525.38	61761	502.39	526.73	61761	502.39	527.66	2.28	0.57	
Loyal_main	1419.472 100y	61761	502.48	525.32	61761	502.48	526.68	61761	502.48	527.60	2.28	0.57	
Loyal_main	1320	Bridge			Bridge			Bridge					
Loyal_main	1211.046 100y	61761	501.77	524.47	61761	501.77	524.65	61761	501.77	525.66	1.19	0.30	
Loyal_main	1155.62 100y	61761	502.09	524.29	61761	502.09	524.47	61761	502.09	525.47	1.18	0.30	
Loyal_main	1100.197 100y	61761	503.28	524.11	61761	503.28	524.29	61761	503.28	525.27	1.16	0.29	
Loyal_main	1029.615 100y	61761	503.74	524.05	61761	503.74	524.22	61761	503.74	525.19	1.14	0.29	
Loyal_main	981.576 100y	61761	504.73	523.77	61761	504.73	523.94		504.73	524.90	1.13	0.28	
Loyal_main	952.636 100y	61761	504.73	523.79	61761	504.73	523.95	61761	504.73	524.89	1.10	0.28	
Loyal_main	884.634 100y	61761	505	523.8	61761	505.00	523.95	61761	505.00	524.85	1.05	0.26	
Loyal_main	802.63 100 y	61761	505	523.24	61761	505.00	523.37	61761	505.00	524.03	0.79	0.20	
Loyal_main	700	Bridge			Bridge			Bridge					
Loyal_main	623.907 100y	61761	504	522.77	61761	504.00	522.82	61761	504.00	523.04	0.27	0.07	
Loyal_main	577.211 100y	61761	499.11	522.83	61761	499.11	522.87	61761	499.11	523.02	0.19	0.05	
Loyal_main	510.647 100y	61761	498.41	522.8	61761	498.41	522.83	61761	498.41	522.96	0.16	0.04	
Loyal_main	386.34 100y	61761	498.27	522.89	61761	498.27	522.91	61761	498.27	522.98	0.09	0.02	
Loyal_main	324.825 100y	61761	499.07	522.82	61761	499.07	522.84	61761	499.07	522.89	0.07	0.02	
Loyal_main	232.376 100y	61761	499.06	522.79	61761	499.06	522.80		499.06	522.84	0.05	0.01	
Loyal_main	150.779 100y	61761	498.94	522.79	61761	498.94	522.79	61761	498.94	522.81	0.02	0.00	
Loyal_main	71.709 100y	61761	498.77	522.8	61761	498.77	522.80	61761	498.77	522.80	0.00	0.00	
								(EM 1110-2-1619 Eq.	5-7)	Mean>	1.62	0.40	

3 August 2005

NDIA Tri-Service Infrastructure Conference

Hydrological and Hydraulic Contributions to Risk and Uncertainty Studies

Hydrologic Uncertainty

Uncertainty with the Discharge – Probability Curve

• Hydraulic Uncertainty

Uncertainty with the Stage – Discharge Function

Interior Flooding Uncertainty

Storm Runoff from the watershed that drains to the interior of a levee must be passed through or over the levee (EM-1110-2-1619). Performance of facilities like gravity outlets, pump stations, pump discharge outlets, collection facilities, storm sewers, and detention storage/flooding involves uncertainty

Interior Flooding Uncertainty

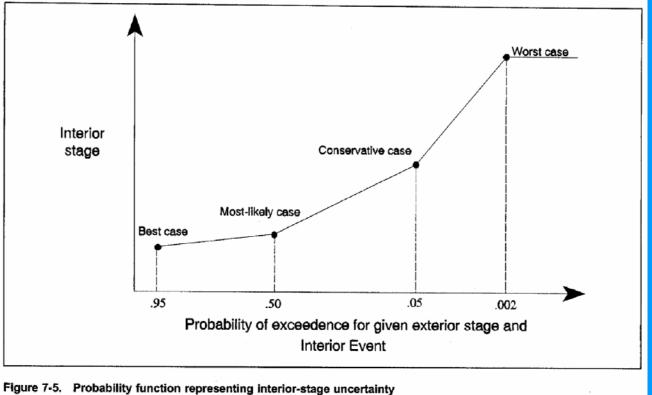
Optimal Process

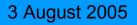
Select four cases by identifying critical factors that define the best case, the Most-likely case, the worst-case, and a conservative case for interior facility Operation. Then, select a probability distribution to represent a likelihood of these scenarios (EM 1110-2-1619). The function should consider:

Table 7-1

Factors That Influence Interior-Area Facility Performance

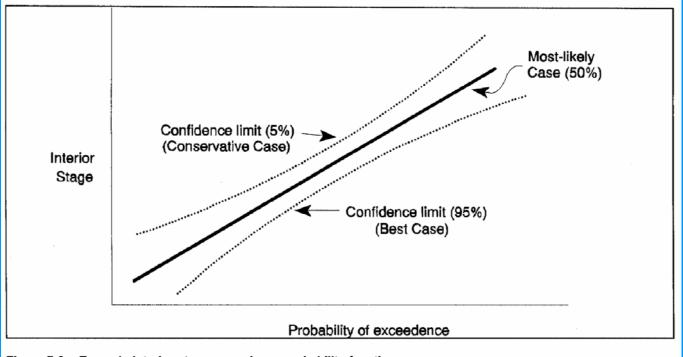
- · Number of pumps or the proportion of the total pumping capacity that remains if one or two pumps are inoperative.
- · Reliability of the electrical power supply.
- · Type and design of pumps.
- $\cdot\,$ Configuration and design of the pumping station.
- \cdot Configuration and capacity of the associated ponding area and gravity outlets.
- · Hydrologic and hydraulic characteristics of both the major (exterior) river basin and the interior watershed.
- · Adverse weather conditions that may occur during a flood such as high winds, intense precipitation, hurricanes, or ice.
- · Effectiveness of flood monitoring, forecasting, and warning systems.
- · Institutional, organizational, financial, and personnel capabilities for maintaining and operating the project.
- · Perceived importance of the closure.


3 August 2005


NDIA Tri-Service Infrastructure Conference

Optimal Process

And the result should look like the following:


NDIA Tri-Service Infrastructure Conference

Interior Flooding Uncertainty

Optimal Process

An annual exceedance curve for error probability similar to that from the HEC-FFA analysis would then be generated:

NDIA Tri-Service Infrastructure Conference

Interior Flooding Uncertainty

Optimal Process

This process would be repeated for a range of values for exterior stage.

However, a study performed earlier Indicated the best-fit curve did not fit well through points.

3 August 2005

NDIA Tri-Service Infrastructure Conference

Interior Flooding Uncertainty

Presently, there is no standard automated way to perform Interior Flooding analyses and their contributions to risk and uncertainty analyses. Presently used expensive procedures could be more efficient.

Standard procedure:

• HEC -1 for Hydrology and HEC-IFH / INTDRA3 for flooding analysis

Recommendation

 I believe in updating and merging HEC-IFH functionality into HEC-HMS and adding automated risk/uncertainty functionality compliant with EM 1110-2-1619 and EM 1110-2-1413, perhaps even an interior sub area delineation feature or something for HEC-GeoHMS

Example Results

Present Economic Benefits of Alternatives

Table 9-13

Plan	Annual With-Project Residual Damage, \$1000's	Annual Inundation Reduction Benefit, \$1000's	Annual Cost, \$1000's	Annual Net Benefit, \$1000's
Without project	78.1	0.0	0.0	0.0
6.68-m levee	50.6	27.5	19.8	7.7
7.32-m levee	39.9	38.2	25.0	13.2
7.77-m levee	29.6	48.5	30.6	17.9
8.23-m levee	18.4	59.7	37.1	22.6
Channel modification	41.2	36.9	25.0	11.9
Detention basin	44.1	34.0	35.8	-1.8
Mixed measure	24.5	53.6	45.6	8.0

Table 9-14

Annual Exceedance Probability and Long-term Risk

				Long-term I	Risk
Plan	Median Estimate of An- nual Exceedance Probability	Annual Exceedance Probability with Uncer- tainty Analysis	10 yr	25 yr	50 yr
6.68-m levee	0.010	0.0122	0.12	0.26	0.46
7.32-m levee	0.007	0.0082	0.08	0.19	0.34
7.77-m levee	0.004	0.0056	0.05	0.13	0.25
8.23-m levee	0.002	0.0031	0.03	0.08	0.14
Channel modification	0.027	0.031	0.27	0.55	0.79
Detention basin	0.033	0.038	0.32	0.62	0.86
Mixed measure	0.014	0.016	0.15	0.33	0.55

3 August 2005

NDIA Tri-Service Infrastructure Conference

Summary

- Hydrologic and Hydraulic uncertainty needs to be properly studied to account for risk and make better informed decisions with flood situations.
- Current methodology accounts for uncertainty in most hydrologic and hydraulic parameters, EXCEPT

The ability to account for interior flooding uncertainties is still not straightforward at this time and a statistical software add-on in addition to updates to current interior flooding analysis packages would be recommended.