

**Northwestern Division** 



# Improved Water Supply Forecasts for the Kootenay Basin

Randal T. Wortman Hydraulic Engineer

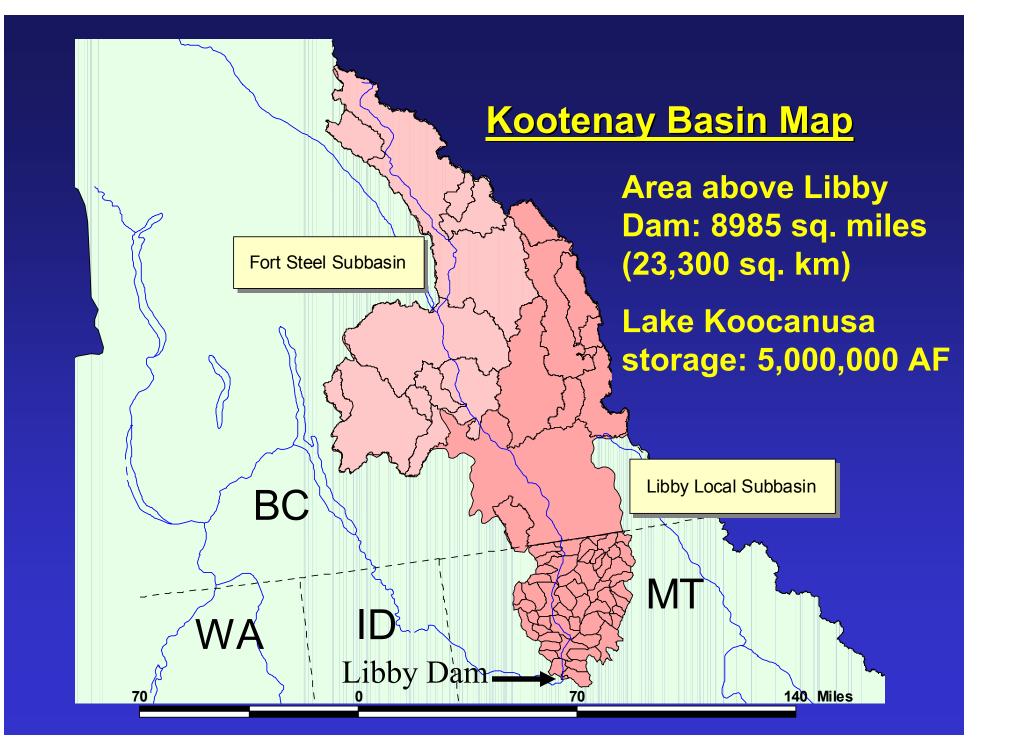
August 4, 2005

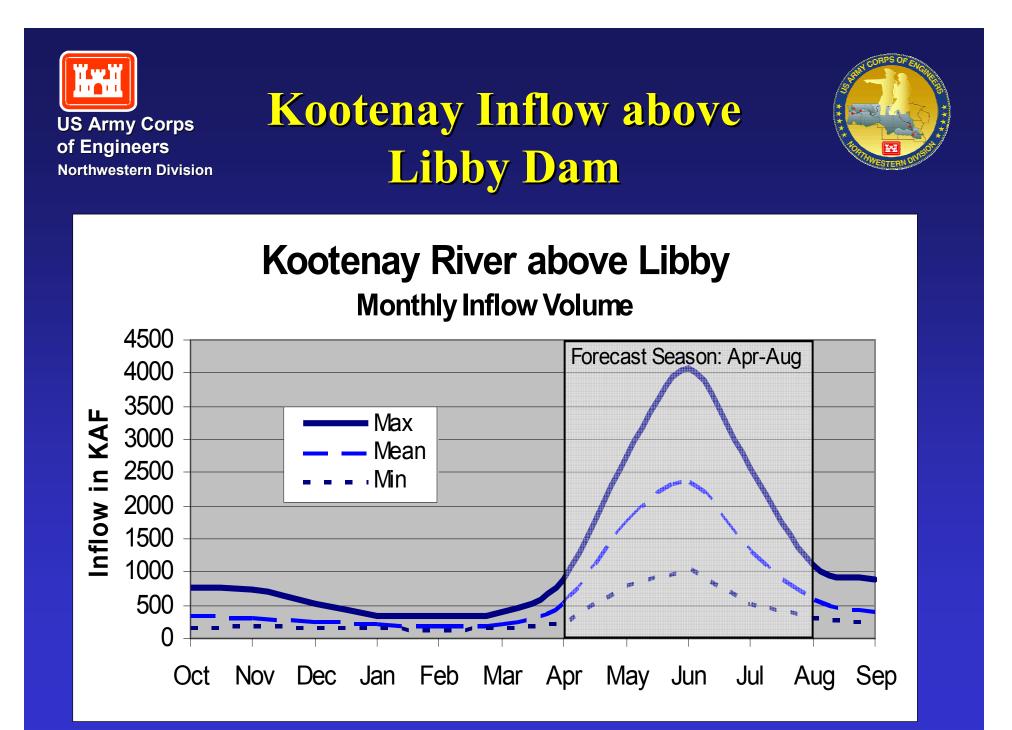
Columbia Basin Water Management Division Northwestern Division, U.S. Army Corps of Engineers PO Box 2870, Portland, OR 97208-2870 Ph: 503 808-3957 Email: randal.t.wortman@usace.army.mil

# Improved Water Supply Forecasts for the Kootenay Basin

Randal T. Wortman









Standard Multiple-Variable Regression in Water Supply Forecasting



 The dependent variable is a seasonal inflow volume, e.g. April-August runoff in thousand-acre-feet (KAF)

 Predictor variables are pseudo-variables created from weighted combinations of similar stations (e.g. sum or average of three snow stations)

| US Army Corps<br>of Engineers<br>Northwestern Division Original Libby Forecast<br>"Split-Basin" Regression<br>Equations |                                                                                               |                                                                                                  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Variable                                                                                                                | <b>Ft Steel Basin</b>                                                                         | Libby Local Basin                                                                                |  |  |  |  |  |  |
| 1 April Snow Water<br>Equivalent (SWE)                                                                                  | Σ MILB, MORB,<br>KGHB, SUMB, MBCB,<br>GRPB, NFRB                                              | Σ SUMB, NFRB, RMTM,<br><u>KIMB</u> , WSLM,<br>0.5*MORB                                           |  |  |  |  |  |  |
| Winter (OctMar)<br>Precipitation (WP)                                                                                   | Σ Oct, Nov, Dec, Jan, Feb, Mar<br>Σ <u>ELKB</u> , BABB, GRPB,<br>BRIB, KASB                   | Σ Oct, Nov, Dec, Jan, Feb, Mar<br>Σ <u>ELKB</u> , <u>FENB</u> , FTIM,<br>LRSM, BONI, <b>POLM</b> |  |  |  |  |  |  |
| Spring (AprAug)<br>Precipitation (SP)                                                                                   | $\Sigma$ Apr, May, .8 Jun, .5 Jul, .2 Aug<br>$\Sigma$ BRIB, KASB, PTHI,<br><b>WASB</b> , CRSB | Σ Apr, May, .8 Jun, .5 Jul, .2 Aug<br>Σ FTIM, PTHI, KASB,<br>WHFM                                |  |  |  |  |  |  |
| Fall Runoff (FRO)                                                                                                       | Σ Oct, Nov<br>Ft Steele basin runoff                                                          | Σ Oct, Nov<br>Libby Local basin runoff                                                           |  |  |  |  |  |  |



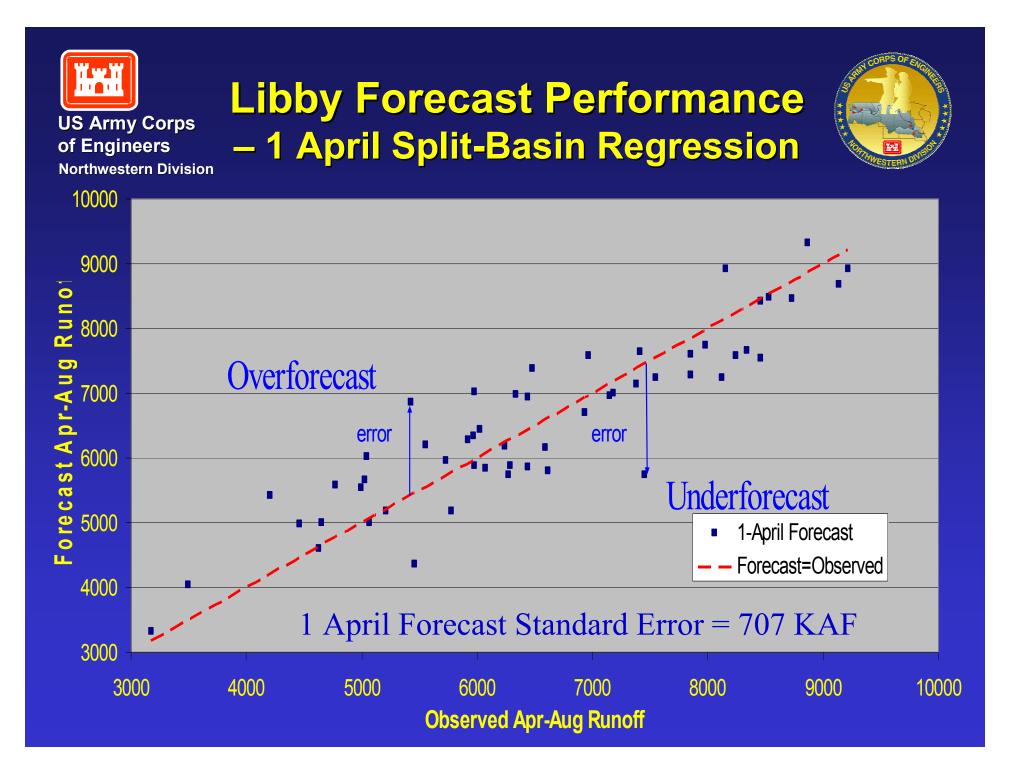
Original Libby Forecast "Split-Basin" Regression Equations



Fort Steele Regression Model $1.309 \ FRO + 0.067 \ SWE + 0.068 \ WP + 0.167 \ SP - 5.114$  $R^2$ =.914 Sept 1 Forecast Std Error=213 KAF

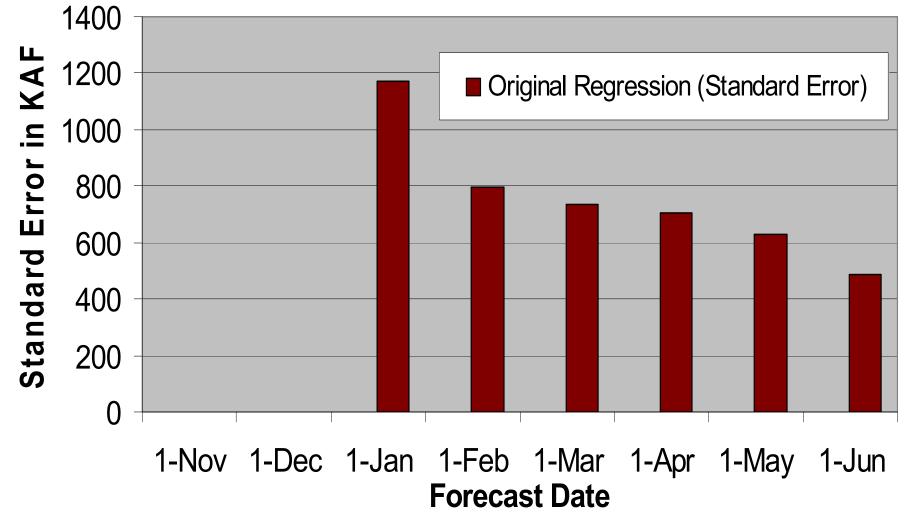
**Libby Local Regression Model** 

0.921 FRO + 0.046 SWE + 0.086 WP + 0.152 SP – 4.183 R<sup>2</sup>=.874 Sept 1 Forecast Std Error=262 KAF



#### Libby Water Supply Forecast using "Split-Basin" Standard Regression

#### **Apr-Aug Runoff in KAF**





- Subjective station selection
- Subjective station weighting/aggregating
- Use of "normal subsequent" variable as a surrogate for a "future value" variable (Avoid)
- <u>Predictor variables are frequently highly</u> intercorrelated. Intercorrelated variables produce interactions and problems with the regression coefficients and goodness-of-fit model statistics.



# **Objectives for New Forecast Equations**

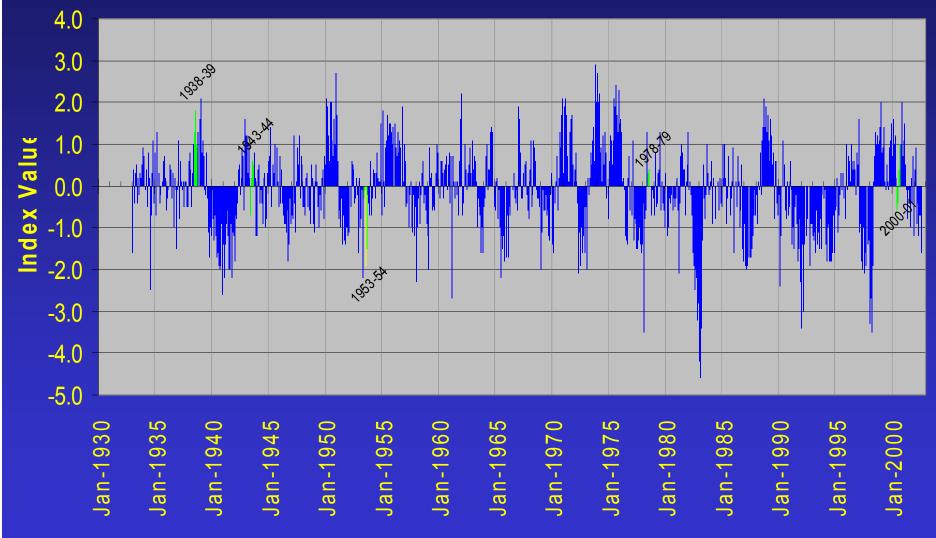


#### Single regression model for the entire basin

- New equation for each month
- Choose models to maintain month-to-month consistency of variables
- Investigate climate variables
  - SOI and PDOI
- Eliminate intercorrelation between predictor variables
- Optimize variable weighting and selection procedures
- Model evaluation/selection utilizes cross-validation statistics

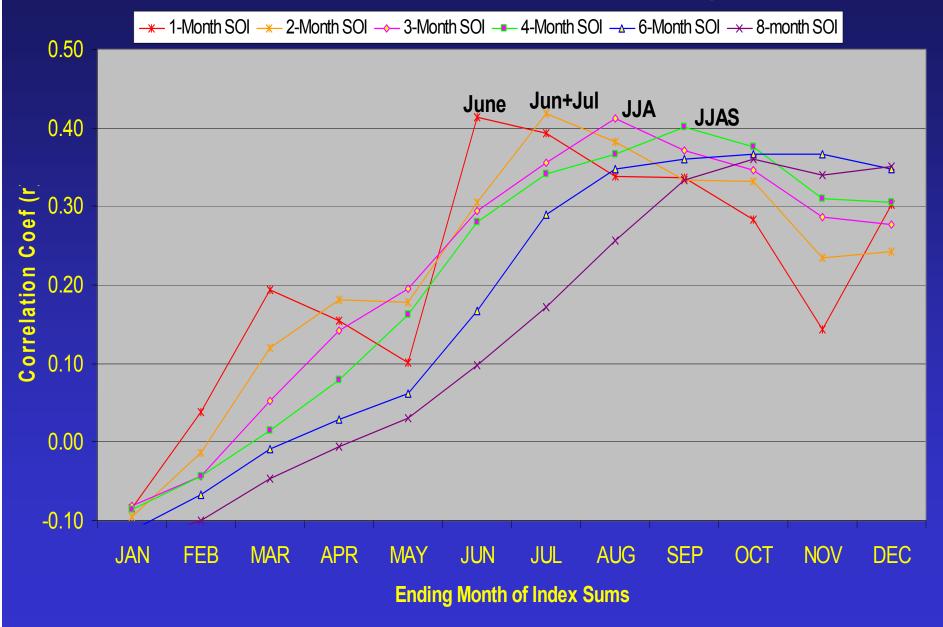
=>Regression variables selected and fitted utilizing NRCS Principal Components regression procedure

#### Historic Monthly SOI 1933-2002



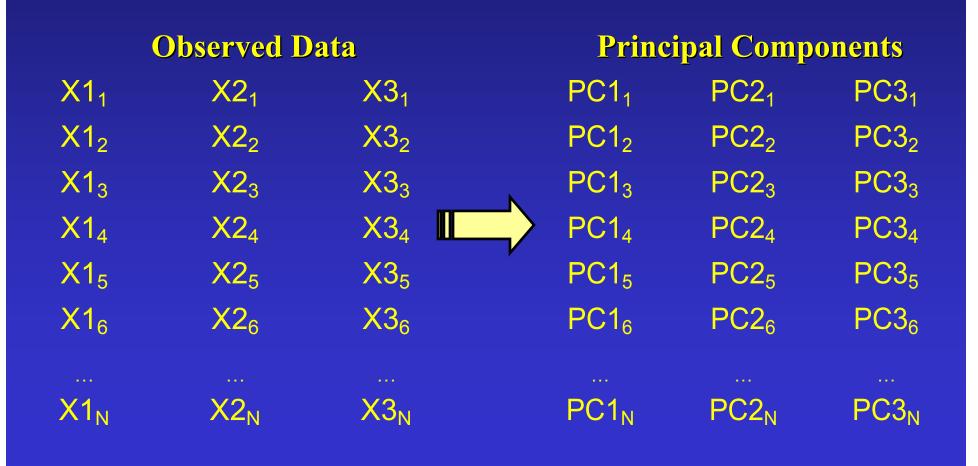
Year

#### Correlation: SOI vs Subsequent Apr-Aug KAF





### **Principal Components**







## **Principal Components**



- Creates surrogate variables (principal components) that are a weighted combination of the original variables.
- The principal components have the property of being fully independent of one another (zero intercorrelation)
- Most of the "variability" in the predictor variables is loaded into the first one or two components.
- Eigenvalues reflect the proportion of the variability in original variables loaded into each component
- Note: PCs combine the information <u>within the predictor</u> <u>variables</u>, but "have no knowledge" of the dependent variable, the variable to be forecasted.



# **Principal Components** Regression



| (                      | Observed D             | ata                    | Traditional Regression Model                                          |
|------------------------|------------------------|------------------------|-----------------------------------------------------------------------|
| $\times 1_1$           | X21                    | X31                    |                                                                       |
| X1 <sub>2</sub>        | <b>X2</b> <sub>2</sub> | <b>X3</b> <sub>2</sub> |                                                                       |
| <b>X1</b> <sub>3</sub> | ×2 <sub>3</sub>        | ×3 <sub>3</sub>        | $\mathbf{V} = (0 + \mathbf{V}) + (0 + \mathbf{V}) + (0 + \mathbf{V})$ |
| ×1₄                    | X2 <sub>4</sub>        | ×3 <sub>4</sub>        | $Y = \beta_0 + \beta_1 * X1 + \beta_2 * X2 + \beta_3 * X3$            |
| ×1 <sub>5</sub>        | ×2 <sub>5</sub>        | ×3 <sub>5</sub>        | $\mathbf{V}$                                                          |
| ×1 <sub>6</sub>        | ×2 <sub>6</sub>        | ×3 <sub>6</sub>        |                                                                       |
| ×1 <sub>N</sub>        | <br>X2 <sub>N</sub>    | <br>X3 <sub>N</sub>    |                                                                       |
|                        |                        |                        | Drive in al Clause an aut                                             |
|                        |                        |                        | Principal Component                                                   |
| Prin                   | ncipal Comp            | ponents                | Regression Model                                                      |
| PC1 <sub>1</sub>       | PC2 <sub>1</sub>       | PC3 <sub>1</sub>       |                                                                       |
| PC1 <sub>2</sub>       | PC2 <sub>2</sub>       | PC3 <sub>2</sub>       | $Y = \beta_0 + \beta_1 * PC1 + \beta_2 * PC2 + \beta_3 * PC3$         |
| PC1 <sub>3</sub>       | PC2 <sub>3</sub>       | PC3 <sub>3</sub>       |                                                                       |
| PC1₄                   | PC2 <sub>4</sub>       | PC3 <sub>4</sub>       |                                                                       |
| PC1 <sub>5</sub>       | PC2 <sub>5</sub>       | PC3 <sub>5</sub>       |                                                                       |
| PC1 <sub>6</sub>       | PC2 <sub>6</sub>       | PC3 <sub>6</sub>       |                                                                       |
| PC1 <sub>N</sub>       | PC2 <sub>N</sub>       | PC3 <sub>N</sub>       |                                                                       |



Principal Components Regression



**Example using SOI, 2 Precip & 4 snow variables** 

- Properties of the Principal Component Regression Model with all "P" Components ("p"= # of original variables)
  - Component R-squared values
  - Component R-squared loading
  - Eigenvalue loading
- 7 original variables -> 7 principal components:

| PC Analysis | PC 1    | PC 2   | PC 3   | PC 4   | PC 5   | PC 6   | PC 7   |  |
|-------------|---------|--------|--------|--------|--------|--------|--------|--|
| R-Square    | 0.84144 |        |        |        |        |        |        |  |
| R-Square %  | 98.5%   | 0.4%   | 0.0%   | 0.0%   | 0.6%   | 0.4%   | 0.1%   |  |
| Cumul R-Sqr | 0.8414  | 0.8453 | 0.8457 | 0.8457 | 0.8506 | 0.8540 | 0.8547 |  |
|             |         |        |        |        |        |        |        |  |
| Eigenvalues | 4.41    | 0.80   | 0.74   | 0.55   | 0.36   | 0.09   | 0.04   |  |
|             |         |        |        |        |        |        |        |  |





### **Principal Components Regression**

• Variable Selection (Which components do I keep?)

- Component retention criteria:
  - Eigenvalue: provides the proportion of variability of X variables contained in each PC
  - significant R-squared: indicates the variability in the Y variable explained by this PC in a linear model, i.e. the usefulness of this PC in predicting the Y variable
  - significant Beta: reject this component when the regression coefficient is indistinguishable from zero.
  - sign of *Beta*: be wary of this component if the sign is negative (applies to water supply forecasting)

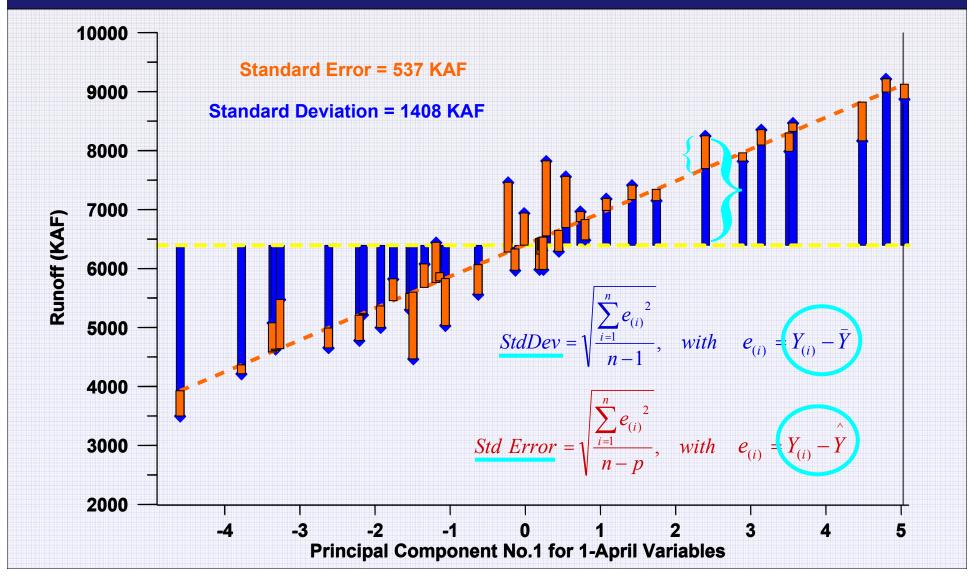




## **Comparing and Evaluating Models**

- Be cautious of statistical models that have too many variables in comparison to the number of observations (years of data).
- Fitting too many variables leads to a model that is "overfit", i.e. is not parsimonious. Overfit models usually produce poor forecasts!
- Both the Adjusted R-square and Standard Error statistics are useful in comparing models, as they include a "degrees-of-freedom adjustment" to account for the number of coefficients used to fit the regression model to the data.

#### **Standard Error**





of Engineers

Northwestern Division



## **Model Comparison: Validation Statistics**

- Calibration statistics reflect the errors of the model optimized to fit to a given set of data.
- Adjusted R-Square and Standard Error are both statistics of the calibration model.
- Validation statistics reflect the errors of the calibrated model <u>being applied to data not used in the calibration.</u>
- Calibration statistics tend to be overly optimistic.
   Forecast models are best suited to be evaluated and compared based on validation statistics.



of Engineers

**Northwestern Division** 



## **Model validation**

Split-Sample validation

**Calibration Data** 

Fit your model to this data

Validation Data

**Compute your error statistics using this data** 

#### Leave-one-out validation

X X X

Calibration Data

I

I

est est est



**Northwestern Division** 



#### **Cross-Validation Standard Error**

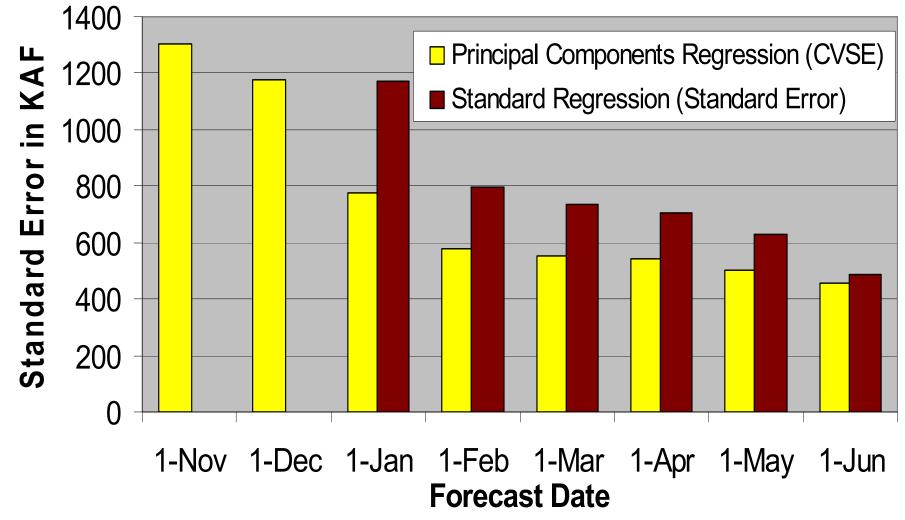
$$CVSE = \sqrt{\frac{\sum e_{(i)}^2}{n-p}}$$

Where  $e_{(i)}$  is the forecast error for the leave-one-out forecast of observation i

- Cross-validation standard error ("Jackknife" Std Err)
- CVSE supports model parsimony by including d-f adj.
- CVSE better indicator of how the model performs with data not used in the calibration, that it "hasn't seen yet"
- OCVSE = PRESS statistic adjusted for degrees-of-freedom
- CVSE can be directly calculated from either Projection matrix or "Hat" matrix (calculated by NRCS PCREG)

#### Libby Water Supply Forecast using Principal Components Regression

#### **Apr-Aug Runoff in KAF**









The following agencies use Principal Components regression in their Water Supply Forecasting procedures:

- National Water and Climate Center, Natural Resources Conservation Service
- Northwestern Division, U.S. Army Corps of Engineers
- Northwest River Forecasting Center, National Oceanic and Atmospheric Administration
- Columbia River Treaty Operating Committee; Canadian and United States Entities
- Bonneville Power Administration, Dept of Energy
- BC Hydro





# **Questions?**