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Standard MultipleStandard Multiple--
Variable Regression inVariable Regression in

Water Supply ForecastingWater Supply Forecasting

�� The dependent variable is a seasonal inflow volume, e.g.The dependent variable is a seasonal inflow volume, e.g.
AprilApril--August runoff in thousandAugust runoff in thousand--acreacre--feet (KAF)feet (KAF)

�� Predictor variables are pseudoPredictor variables are pseudo--variables created fromvariables created from
weighted combinations of similar stations (e.g. sum orweighted combinations of similar stations (e.g. sum or
average of three snow stations)average of three snow stations)
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Libby Local BasinFt Steel BasinVariable
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Fort Steele Regression ModelFort Steele Regression Model

1.3091.309 FROFRO + 0.067+ 0.067 SWESWE + 0.068+ 0.068 WPWP + 0.167+ 0.167 SPSP –– 5.1145.114

RR22=.914=.914 Sept 1 Forecast Std Error=213 KAFSept 1 Forecast Std Error=213 KAF

Libby Local Regression ModelLibby Local Regression Model

0.9210.921 FROFRO + 0.046+ 0.046 SWESWE + 0.086+ 0.086 WPWP + 0.152+ 0.152 SPSP –– 4.1834.183

RR22=.874=.874 Sept 1 Forecast Std Error=262 KAFSept 1 Forecast Std Error=262 KAF

Original Libby Forecast
“Split-Basin” Regression

Equations
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Apr-Aug Runoff in KAF
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Concerns with TraditionalConcerns with Traditional
Regression ModelsRegression Models

�� Subjective station selectionSubjective station selection
�� Subjective station weighting/aggregatingSubjective station weighting/aggregating
�� Use of “normal subsequent” variable as a surrogateUse of “normal subsequent” variable as a surrogate

for a “future value” variable (Avoid)for a “future value” variable (Avoid)
�� Predictor variables are frequently highlyPredictor variables are frequently highly

intercorrelated. Intercorrelated variables produceintercorrelated. Intercorrelated variables produce
interactions and problems with the regressioninteractions and problems with the regression
coefficients and goodnesscoefficients and goodness--ofof--fit model statistics.fit model statistics.
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�� Single regression model for the entire basinSingle regression model for the entire basin
�� New equation for each monthNew equation for each month
�� Choose models to maintain monthChoose models to maintain month--toto--month consistency of variablesmonth consistency of variables

�� Investigate climate variablesInvestigate climate variables
�� SOI and PDOISOI and PDOI

�� Eliminate intercorrelation between predictor variablesEliminate intercorrelation between predictor variables
�� Optimize variable weighting and selection proceduresOptimize variable weighting and selection procedures
�� Model evaluation/selection utilizes crossModel evaluation/selection utilizes cross--validationvalidation

statisticsstatistics

=>Regression variables selected and fitted utilizing NRCS=>Regression variables selected and fitted utilizing NRCS
Principal Components regression procedurePrincipal Components regression procedure

Objectives for NewObjectives for New
Forecast EquationsForecast Equations
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Correlation: SOI vs Subsequent Apr-Aug KAF

June Jun+Jul JJA JJAS

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Ending Month of Index Sums

C
or

re
la

tio
n 

C
oe

f (
r)

1-Month SOI 2-Month SOI 3-Month SOI 4-Month SOI 6-Month SOI 8-month SOI



US Army CorpsUS Army Corps
of Engineersof Engineers
Northwestern DivisionNorthwestern Division Principal ComponentsPrincipal Components

X11 X21 X31

X12 X22 X32

X13 X23 X33

X14 X24 X34

X15 X25 X35

X16 X26 X36

… … …

X1N X2N X3N

PC11 PC21 PC31

PC12 PC22 PC32

PC13 PC23 PC33

PC14 PC24 PC34

PC15 PC25 PC35

PC16 PC26 PC36

… … …

PC1N PC2N PC3N

Observed DataObserved Data Principal ComponentsPrincipal Components



US Army CorpsUS Army Corps
of Engineersof Engineers
Northwestern DivisionNorthwestern Division Principal ComponentsPrincipal Components

�� Creates surrogate variables (principal components) thatCreates surrogate variables (principal components) that
are a weighted combination of the original variables.are a weighted combination of the original variables.

�� The principal components have the property of beingThe principal components have the property of being
fully independent of one another (zero intercorrelation)fully independent of one another (zero intercorrelation)

�� Most of the “variability” in the predictor variables isMost of the “variability” in the predictor variables is
loaded into the first one or two components.loaded into the first one or two components.

�� EigenvaluesEigenvalues reflect the proportion of the variability inreflect the proportion of the variability in
original variables loaded into each componentoriginal variables loaded into each component

�� Note: PCs combine the informationNote: PCs combine the information within the predictorwithin the predictor
variablesvariables, but “have no knowledge” of the dependent, but “have no knowledge” of the dependent
variable, the variable to be forecasted.variable, the variable to be forecasted.
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Principal ComponentsPrincipal Components
RegressionRegression

3*2*1* 3210 XXXY ββββ +++=
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Regression ModelRegression Model
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Principal ComponentsPrincipal Components
RegressionRegression

�� Properties of the Principal Component Regression ModelProperties of the Principal Component Regression Model
with all “P” Components (“p”= # of original variables)with all “P” Components (“p”= # of original variables)
�� Component RComponent R--squared valuessquared values
�� Component RComponent R--squared loadingsquared loading
�� Eigenvalue loadingEigenvalue loading

�� 7 original variables7 original variables --> 7 principal components:> 7 principal components:
PC Analysis PC_1 PC_2 PC_3 PC_4 PC_5 PC_6 PC_7
R-Square 0.84144 0.00383 0.00040 0.00003 0.00495 0.00336 0.00068
R-Square % 98.5% 0.4% 0.0% 0.0% 0.6% 0.4% 0.1%
Cumul R-Sqr 0.8414 0.8453 0.8457 0.8457 0.8506 0.8540 0.8547

Eigenvalues 4.41 0.80 0.74 0.55 0.36 0.09 0.04

Example using SOI, 2 Precip & 4 snow variablesExample using SOI, 2 Precip & 4 snow variables
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Principal Components RegressionPrincipal Components Regression

�� Variable Selection (Which components do I keep?)Variable Selection (Which components do I keep?)
�� Component retention criteria:Component retention criteria:

�� Eigenvalue: provides the proportion of variability of XEigenvalue: provides the proportion of variability of X
variables contained in each PCvariables contained in each PC

�� significant Rsignificant R--squared: indicates the variability in the Ysquared: indicates the variability in the Y
variable explained by this PC in a linear model, i.e. thevariable explained by this PC in a linear model, i.e. the
usefulness of this PC in predicting the Y variableusefulness of this PC in predicting the Y variable

�� significantsignificant Beta:Beta: reject this component when the regressionreject this component when the regression
coefficient is indistinguishable from zero.coefficient is indistinguishable from zero.

�� sign ofsign of BetaBeta: be wary of this component if the sign is negative: be wary of this component if the sign is negative
(applies to water supply forecasting)(applies to water supply forecasting)
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Comparing and Evaluating ModelsComparing and Evaluating Models
� Be cautious of statistical models that have too many

variables in comparison to the number of observations
(years of data).

� Fitting too many variables leads to a model that is
“overfit”, i.e. is not parsimonious. Overfit models
usually produce poor forecasts!

� Both the Adjusted R-square and Standard Error
statistics are useful in comparing models, as they
include a “degrees-of-freedom adjustment” to account
for the number of coefficients used to fit the regression
model to the data.

�� Be cautious of statistical models that have too manyBe cautious of statistical models that have too many
variables in comparison to the number of observationsvariables in comparison to the number of observations
(years of data).(years of data).

�� Fitting too many variables leads to a model that isFitting too many variables leads to a model that is
““overfitoverfit”, i.e. is not parsimonious.”, i.e. is not parsimonious. OverfitOverfit modelsmodels
usually produce poor forecasts!usually produce poor forecasts!

�� Both theBoth the Adjusted RAdjusted R--squaresquare andand Standard ErrorStandard Error
statistics are useful in comparing models, as theystatistics are useful in comparing models, as they
include a “degreesinclude a “degrees--ofof--freedom adjustment” to accountfreedom adjustment” to account
for the number of coefficients used to fit the regressionfor the number of coefficients used to fit the regression
model to the data.model to the data.
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Validation StatisticsValidation Statistics

�� Calibration statisticsCalibration statistics reflect the errors of the modelreflect the errors of the model
optimized to fit to a given set of data.optimized to fit to a given set of data.

�� Adjusted RAdjusted R--SquareSquare andand Standard ErrorStandard Error are both statisticsare both statistics
of the calibration model.of the calibration model.

�� Validation statisticsValidation statistics reflect the errors of the calibratedreflect the errors of the calibrated
modelmodel being applied to data not used in the calibration.being applied to data not used in the calibration.

�� Calibration statisticsCalibration statistics tend to be overly optimistic.tend to be overly optimistic.
Forecast models are best suited to be evaluated andForecast models are best suited to be evaluated and
compared based oncompared based on validation statisticsvalidation statistics..
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Model validationModel validation

Calibration Data Validation Data

Fit your model to this data Compute your error
statistics using this data

Calibration DataX

est

X X

est est

�� SplitSplit--Sample validationSample validation

�� LeaveLeave--oneone--out validationout validation
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CrossCross--Validation Standard ErrorValidation Standard Error

�� CrossCross--validation standard error (“Jackknife” Std Err)validation standard error (“Jackknife” Std Err)
�� CVSE supports model parsimony by includingCVSE supports model parsimony by including dd--ff adj.adj.
�� CVSE better indicator of how the model performs withCVSE better indicator of how the model performs with

data not used in the calibration, that it “hasn’t seen yet”data not used in the calibration, that it “hasn’t seen yet”
�� CVSE = PRESS statistic adjusted for degreesCVSE = PRESS statistic adjusted for degrees--ofof--freedomfreedom
�� CVSE can be directly calculated from either ProjectionCVSE can be directly calculated from either Projection

matrix or “Hat” matrix (calculated by NRCS PCREG)matrix or “Hat” matrix (calculated by NRCS PCREG)

pn
e

CVSE i

−
= ∑ 2

)(
Where e(i) is the forecast error
for the leave-one-out forecast
of observation i
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The following agencies use Principal Components regression in thThe following agencies use Principal Components regression in theireir
Water Supply Forecasting procedures:Water Supply Forecasting procedures:

�� National Water and Climate Center, Natural ResourcesNational Water and Climate Center, Natural Resources
Conservation ServiceConservation Service

�� Northwestern Division, U.S. Army Corps of EngineersNorthwestern Division, U.S. Army Corps of Engineers
�� Northwest River Forecasting Center, National OceanicNorthwest River Forecasting Center, National Oceanic

and Atmospheric Administrationand Atmospheric Administration
�� Columbia River Treaty Operating Committee; CanadianColumbia River Treaty Operating Committee; Canadian

and United States Entitiesand United States Entities
�� Bonneville Power Administration, Dept of EnergyBonneville Power Administration, Dept of Energy
�� BC HydroBC Hydro



US Army CorpsUS Army Corps
of Engineersof Engineers
Northwestern DivisionNorthwestern Division

Questions?Questions?


