

Walla Walla District

WALLA WALLA DISTRICT

SURFACE BYPASS & REMOVABLE SPILLWAY WEIRS

INTRODUCTION

Pacific Northwest

Walla Walla District Snake and Columbia River Projects

United States

BACKGROUND

- Endangered Species / Regional Impacts
- Recovery Plan Options
 - Dam Removals
 - System Improvements

FISH PASSAGE ROUTES

- Juvenile Fish Passage Methods
 - Multiple Paths
 - Traditional Spill Currently Favored for In-River

US Army Corps of Engineers ®

Walla Walla District

TRADITIONAL FISH SPILL DRAWBACKS

- Fish Passage
 Deep Spill Gates
- Water Quality
 - Exceeds 110% TDG
- Forgone Power
 - \$186 Million Annually (LCR and LSR)
 - \$40 Million Annually (LSR)

SURFACE BYPASS SPILL ALTERNATIVE

- Fish Goals
 - Increase Passage Non-Turbine Routes
 - Increase Survival
 - Reduce Delay
- Water Quality Goals
 - Lower Dissolved Gas Levels
- Power Goals
 - Higher Revenues

SURFACE BYPASS DEVELOPMENT

Lower Granite Dam

- Columbia and Snake River Projects
 - Numerous Prototypes (mid 1990's / early 2000's)
 - Lower Granite Dam

LOWER GRANITE PRE-RSW DEVELOPMENT

Powerhouse / SBC – Side View

BGS – Isometric View

Site Plan (1998-2000)

LOWER GRANITE RSW DESCRIPTION

LOWER GRANITE RSW OPERATING POSITON

Fish Passage Route Turbine Intake

Side View

Isometric View

Side View

Isometric View

Walla Walla District

US Army Corps of Engineers ®

Field Measurements

Numeric Models

Physical Models

- Biological Methods
 - Radio Tracking
 - Hydroacoustics
 - Balloon Tags
 - Acoustic Tags / 3D
 Tracking

CORRELATION FISH BEHAVIOR / HYDRAULICS

US Army Corps

of Engineers ® Walla Walla District

RSW RESULTS AND BENEFITS

- Improved Fish Passage
 - Highly Efficient
 - Less Delay
 - Greater Survival Potential
- Better Water Quality
 120% to 110% TDG
- Increased Power Revenues
 - \$13-20 Million <u>Annual</u> Savings (Four LSR Dams)

FUTURE

- Broad Regional Support
- Lower Granite RSW
 Normal Operations
- Ice Harbor RSW in 2005
- High Interest for Other Projects

Ice Harbor Dam

QUESTIONS?

CONTACT INFORMATION

- Lynn Reese
- Walla Walla District COE
- 509-527-7531
- lynn.a.reese@usace.army.mil