Helmand Valley Water Management Plan

Presented By: Jason Needham, P.E. (HEC)

Project Team: HEC, AED, USAID

USACE, Hydrologic Engineering Center

Problem Statement

- Over 25 years of turmoil has lead to deficient water management in Afghanistan
 - Construction
 - Maintenance
 - Operations
 - Technical
 - Capacity
 - Equipment

Project Overview

Purpose

- Develop water management plans for Helmand Valley
- Restore water management institutional capacity in Afghanistan
- Two phase process
- Funded and managed by US Agency for International Development (USAID)
 - Contracted with USACE Afghanistan Engineering District (AED) and USACE Hydrologic Engineering Center (HEC)

The Helmand Valley

- Drainage area
 - 160,000 km²
 - 31% of country
- Helmand River
 - AY~14 Billion m³
- Kajakai Reservoir

Kajakai Reservoir

Max Capacity - 3.2 Billion m³

- Water supply
 - Irrigation
 - Wetlands
 - Iran
- Hydropower
 - Existing 33 MW
 - Design 150 MW

Phase I

Goals

- Provide updated information on the capacity of the Helmand system to support water resource demands.
- Evaluate immediate improvements to the system and provide information for long-term planning of water resources.
- Begin capacity building process.

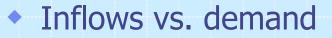
Phase I – Tasks

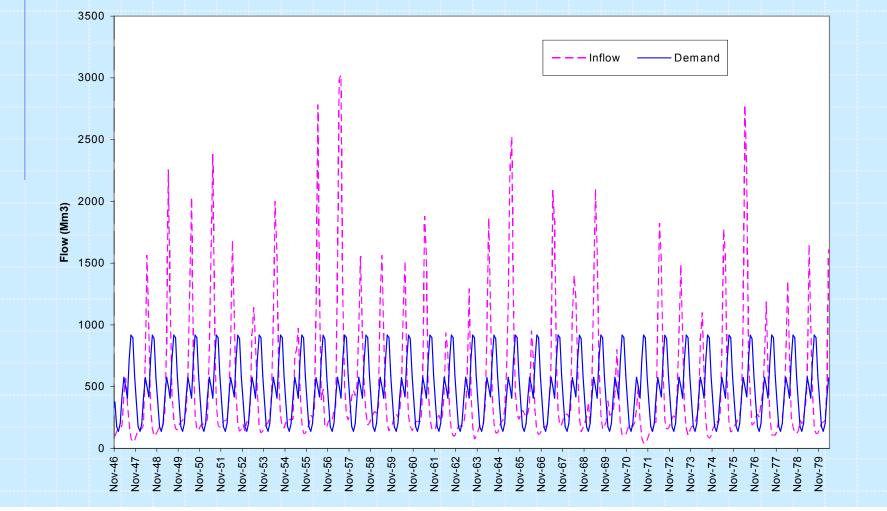
Hydrologic Data

- Data gathering and validation
 - 42 stream gages
 - 1950s through late 1970s
- USGS 1991 event
- Institutional capacity building
 - Ministry of Water and Energy Engineers (6)
 - Two week water management training in US
 - Site visits
 - Joint Operation Center (DWR, USGS, NWS, USACE)
 - Gage sites
 - Irrigation districts
 - Large reservoirs and hydropower facilities
 - Small reservoir and water diversion structures
 - Irrigation management information system
 - Introduction to water management software

Phase I – Water Management Tour

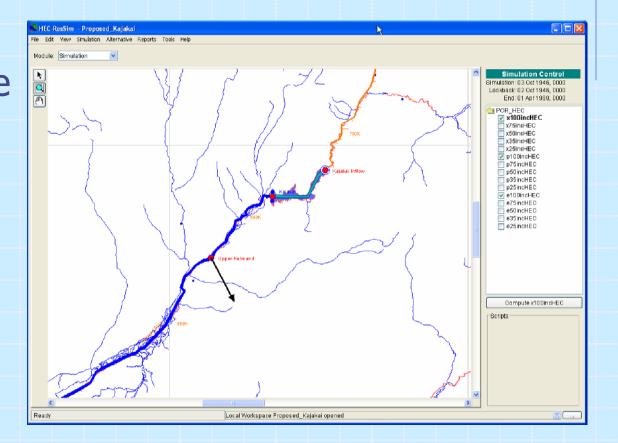
Phase I – Water Management Tour



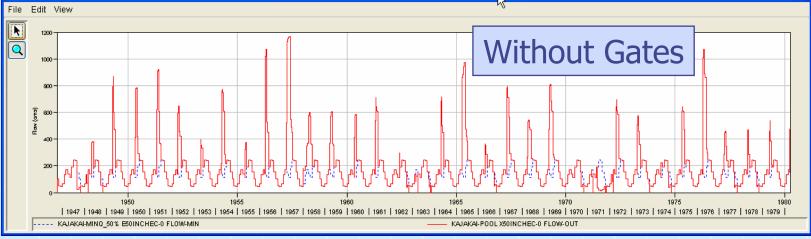

Phase I – Tasks (Continued)

Preliminary Water Budget Analysis

- Update information on capacity of Kajakai Reservoir for irrigation supply and power generation
 - Simulation Model
 - Existing configuration
 - Existing power/gated spillway
 - Expanded power/gated spillway
 - Raised dam/expanded power/gated spillway
 - Use historic inflow record
 - Demands
 - Various levels of irrigation demand
 - Iran treaty requirements


Phase I – Tasks

Simulation Model – HEC-ResSim


- Rule-based
 Multi-purpose system simulation
- Network structure – object structured.

Water Supply Comparison – 50% Demand

Water Supply Comparison – 50% Demand

1972

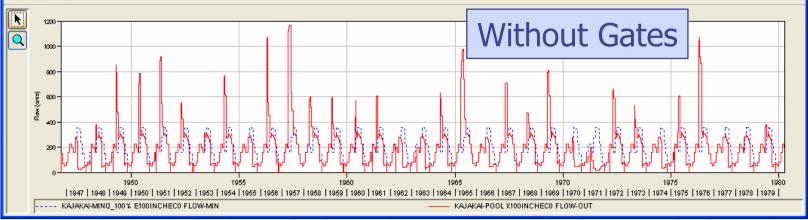
1973

KAJAKAI-POOL X50INCHEC-0 FLOW-OUT

1974

>

1971


1970

--- KAJAKAI-MINQ_50% E50INCHEC-0 FLOW-MIN

<

Water Supply Comparison – 100% Demand

Water Supply Comparison – Raised Dam

Phase I – Tasks (Continued)

- Preliminary Water Budget Analysis (cont.)
 - Preliminary rule curves
 - Time to fill estimate
 - Report
- Define Phase II

Phase II

Comprehensive simulation model

- Tributaries
- Demands
- Hydropower vs. irrigation trade-off
- Reservoir regulation manuals
- Training

Contact

- Jason Needham
- US Army Corps of Engineers
- Hydrologic Engineering Center
- Davis, CA 95616
- (530) 756-1104
- Jason.t.needham@usace.army.mil