

What is HydroAMP?

Asset management tools developed to improve

2

- Evaluation of hydroelectric equipment
- Prioritization of investments

Objectives

- Background
 - Goals, methodology, and principles

3

- Condition assessments
- Business analyses
- Current status
- What's next
- Conclusions

Background

In 2001, four organizations began creating an asset management framework.

- Bureau of Reclamation
- Hydro-Québec
- Corps of Engineers
- Bonneville Power Administration

Motivation

- Aging infrastructure
- Generation availability and reliability
- Objective, consistent, and valid assessments

5

- Strengthen prioritization processes
- Available tools too complex and costly

Goals

- Streamlined condition assessments
 - Justify investigations, repairs, and refurbishments
- Strategic business decisions
- Long-term viability and reliability

Methodology

- Assessment tools for major powerhouse equipment
- Field validation
 - Computerized data collection, trending, and reporting
- Management tools based on condition, risk, and other factors

Principles

- Objective results
- Developed from routine tests and inspections
- Simple process
 - Easy interpretation
- Technically sufficient (not necessarily perfect)

- Consistent and repeatable results
- Multi-agency team effort
- Start small, expand with time
- Open to improvement

Condition Assessments

Tier 1:

- Information and guidelines
- Condition Indicators for each type of equipment
- Scored using routine tests and inspections
- Results in Condition Index on scale of 1-10; higher is better
- Mid- to low-range values may trigger Tier 2 evaluation

Condition Assessments (cont.)

Tier 2:

- In-depth, non-routine tests or inspections
 - Invasive and/or require specialized equipment and expertise
- Adjust Condition Index up or down
- Add confidence to results and conclusions

Example: Turbine Assessment

Tier 1:

Condition Indicator	Score
Age	0 - 3.0
Physical Condition	0 - 4.0
Operating Restrictions	0 - 1.5
Maintenance History	0 - 1.5
Turbine Condition Index	0 - 10.0
Data Quality Indicator	0, 4, 7, or 10

Example: Turbine Assessment (cont.)

Efficiency	+/- 1.0
Capacity	+/- 0.5
Surface Roughness	+/- 0.5
Cracking	+/- 1.0
Cavitation	+/- 0.5
Environmental Improvements	+/- 0.5
Off-Design Conditions	+/- 0.5
Total Adjustment to Condition Index	+/- x.x
	12

Condition-Based Alternatives

Condition Index	Suggested Action
\geq 7.0 and \leq 10 (Good)	Continue O&M without restriction.
≥ 3.0 and < 7.0 (Fair)	Continue operation but reevaluate O&M practices Consider Tier 2 tests.
≥ 0 and < 3.0 (Poor)	Immediate evaluation including Tier 2 testing. Consultation with experts Adjust O&M as prudent.

Example: Generator Assessment

Tier 1: (Stator and field windings)

- Insulation resistance and PI
- O&M history
- Physical inspection
- Age

Tier 2: (Stator, Rotor, Core)

- Blackout DC ramp High-pot
 - Partial discharge
 - Power factor
 - Ozone

- Rated flux (loop)
- EL CID
 - Wedge tightness
 - Pole drop

Example: Transformer Assessment

Tier 1:

- Oil analysis
- Doble tests
- O&M history
- Age

Tier 2:

- Turns ratio
- Short circuit impedance
- Core ground
- Winding resistance

- Vibration analysis
- Frequency response
- Internal inspection
- Polymerization

Available Guides

Power train and auxiliary systems:

- Turbines
- Generators
- Transformers
- Circuit Breakers
- Governors
- Exciters

- Surge Arresters
- Emergency Closure Gates
 & Valves
- Cranes
- Compressed Air Systems
- Station Batteries

Building the Business Case

- Allocations based on condition, risk, economics, other factors
- Component, unit, and plant summaries
- Open and flexible analysis tools
- Fit into existing maintenance, planning, budgeting, and decision-making processes

Building the Business Case (cont.)

Analyses may vary in complexity:

Simple: Condition/Trend → Decision
 Example – Failing compressor

 Comparative: Condition/Trend → Value → Decision

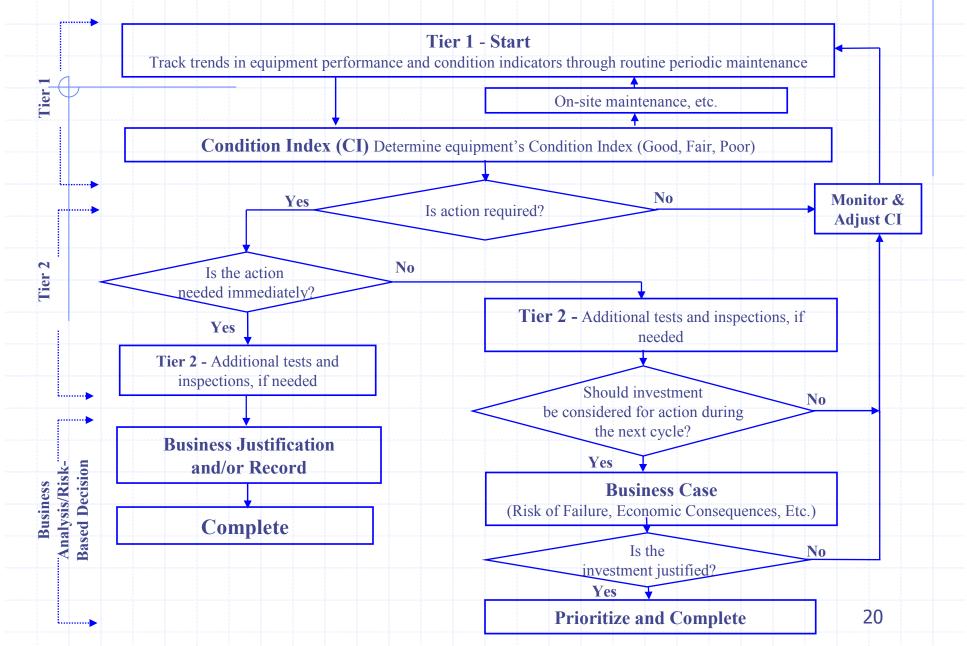
Example – Crane repair

 In-Depth: Condition/Trend → Value → Risk and Economics → Decision

Example – Generator uprate

Example: Influence Diagram (Risk Map) for a Population of Transformers

Risk Map


9 to 10 0 0 . . . • . Good 8 to 8.9 7 to 7.9 . 6 to 6.9 0 . \$11M Program 5 to 5.9 Fair . . **\$8M Program** 4 to 4.9 • . . 3 to 3.9 2 to 2.9 Poor 1 to 1.9 . . • 0 to 0.9 . Medium-Low Medium Medium-High Low High

> Consequences (Based on Risk to Revenue or other factors)

Transformer Condition Index

19

Overall Process

Intended Users

- O&M Field Staff
- Technical Support Staff & HDC
- Plant Managers
- District & Division Management
- Investment Decision-Makers

Current Status

COE – Within FCRPS:

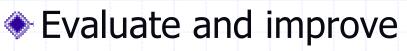
- Transformer spare study (FY04)
- Tier 1 on all generators (FY05)
- Completing Tier 1 of turbines, governors, exciters, and circuit breakers.
 - PI goal is 95% completion of power train in FY05

Current Status

COE – Outside FCRPS:

- Planning pilot tests
- Using HydroAMP nationally to meet PART
- Nationwide transformer assessments in FY05 and FY06 (USACE-funded)

Current Status (cont.)


BPA & COE:

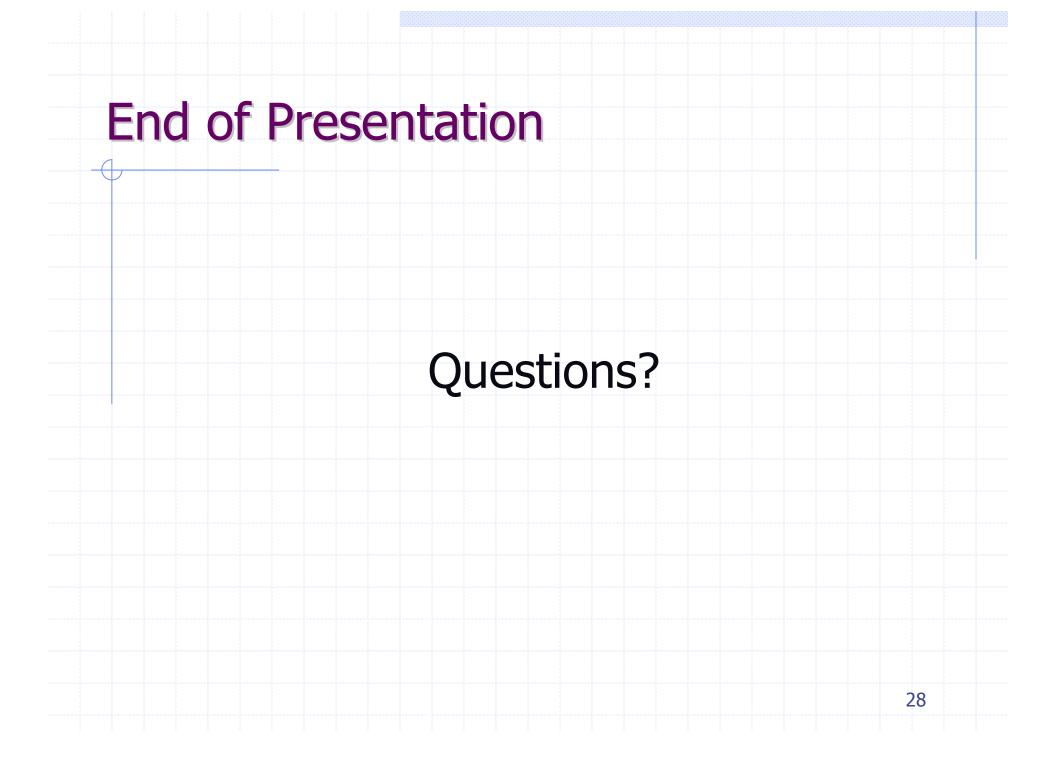
- Excel spreadsheet for FCRPS assessment data
 - Calculates unit and plant condition summaries
- Developing web-based application
 - > Improved data collection, tracking, reporting
 - > Accommodate all Corps plants

What's Next?

Complete asset management tools

- > Equipment assessment guides
- > Guidebook
- Implement nationwide
 - On-site training/orientation outside of FCRPS
 Make tools available

> Assess, update, clarify


What's Next? (cont.)

- USACE Workshop on Asset Management (August '05)
 - Describe HydroAMP program
 - > Relate to other CW business lines
- Special panel session planned for *HydroVision* 2006 (with HydroAMP partners).

Conclusions

HydroAMP supports

- Repair, replacement, monitoring
- Comparisons and prioritization
- Budget coordination at multiple levels
- Long-term investment strategies
- Performance goals

