Project Overview

- Project protects the adjacent cities of Festus and Crystal City, MO., including the sewage treatment plant and a major highway connecting the cities.
Project Overview

- The project will keep flood events, such as the Great Midwest Flood of 1993, from impacting life in these towns.
Project Overview

- Project provides Urban Design Level of Protection (500 year flood).
- Only highway between Festus and Crystal City subject to flooding.
- Only sewage treatment plant for a growing area with a present population of 40,000.
- Multiple project features were constructed.
- Total Project Cost $13,400,000.
Project Overview

EARTHEN LEVEE
Project Overview

RAILROAD_closure_STRUCTURE
Project Overview

PUMP STATION WITH MSE WALL
MECHANICALLY STABILIZED WALL AND EMBANKMENT
Pump Station Overview

- 120 cfs Total Pump Station Capacity
- 2 - Flygt Submersible Pumps
- 505 acre Ponding Area
- 2 – 8’ Wide x 8’ High Box Culverts with Cast Iron Sluice Gates
- Pump Station Switchgear and Controls Located Inside the Existing Sewage Treatment Plant
- Station Operates at 480 VAC
- Automatic Sluice Gate and Pump Operation Using Programmable Logic Controller
- Total Pump Station Construction Cost - $3,000,000
Pump Station Plan & Profile
Pump Station Profile
Pump Station/Gravity Drain

INLET STRUCTURE
Pump Station/Gravity Drain

BOX CULVERT CONSTRUCTION
Pump Station Construction

PUMP STATION STRUCTURE AND WING WALLS
Gravity Drain Features

SLUICE GATE WALL THIMBLE & GATE SLIDE
Gravity Drain Box Culvert

SLUICE GATE SLIDE & GATE HOIST
MSE Wall Installation

MSE WALL FOUNDATION & EMBANKMENT
MSE Wall Installation

MSE EMBANKMENT & BLOCK WALL
Submersible Pumps

- Flygt PL-7081
- Rated for 27,000 gpm @ 13.7 ft. TDH
- Pump Speed – 885 RPM
- Pump Tube Diameter – 40 in.
- Motor Size - 200 Hp
- Motor Voltage - 480 V
- Rated Current - 242 amp
Submersible Pumps

FACTORY TESTING IN SWEDEN
Gateway to Excellence

Submersible Pumps

PUMP DISCHARGE TUBE
Submersible Pumps

PUMP DISCHARGE TUBE
Submersible Pumps

“DUCK-BILL” DISCHARGE INSTEAD OF FLAP GATE
Submersible Pumps

SUBMERSIBLE PUMP INSTALLATION
Submersible Pumps

“GRIP-EYE” SYSTEM TO SUPPORT POWER CABLES
Submersible Pumps

SIDE POWER CABLE ENTRANCE INSTEAD OF THRU THE TOP OF THE TUBE
Electrical Controls

ELECTRICAL EQUIPMENT INSTALLATION
Automatic Operation

- PLC automatically operates two gravity flow sluice gates at programmed water levels (using motor actuated gate hoists).
- Pressure transducers measure water level in four locations: Inlet, Outlet, Sump No. 1 and Sump No. 2.
- Two transducers are installed at each location to monitor for accuracy of measurements. PLC Logic detects open circuit or out of range.
- PLC starts and stops the pumps based on the water level at the Inlet Structure.
- PLC stores the run time of each pump in memory.
- Manual (Hand) Operation for sluice gates and pumps.
- Low Water Cut-off Float for Pumps and Float Operated High Water Sluice Gate Back-up Operation
Monitoring & Control Systems

Sluice Gate Controller

Pump Control Panel
Gateway to Excellence

St. Louis District

Monitoring & Control Systems

Pump & Sluice Gate Status Screen
(MAGELIS Screen)
Digital Water Level Display

Sump Transducers

Inlet Transducers
Pump & Motor Protection

Pump/Motor Monitoring Device
(Flygt CAS Unit)

Solid State Overload Relay
Provisions for Back-Up Generator

Generator Connection Access Panel

Dedicated Circuit Breaker for Generator
Failures and Alarms

- PLC monitors the CAS Unit and Solid State Overload Relay located in the motor starter. The CAS Unit instruments the following:
 - Stator Temperature
 - Bearing Temperature
 - Stator Leakage
 - Motor Junction Box Leakage

- The PLC tries to start a pump for 30 seconds. If the pump does not start, a “Failure to Start” alarm is generated.

- Failures trigger the audible alarm located on the PLC Enclosure to alert an onsite operator.

- PLC also tries to start the second pump.

- If personnel do not acknowledge the alarm within 10 minutes, the PLC activates the autodialer.
Stephen G. Farkas, P.E.
Chief, Struc/Arch/Mech/Elec Section

CEMVS-ED-DA 314-331-8264

stephen.g.farkas@mvs02.usace.army.mil