Standard Procedures for Fatigue Evaluation of Bridges

Presentation for the

2005 Tri-Service Infrastructure Conference

> by **Phil Sauser** Structural Engineer, Saint Paul District

> > 03 August 2005

US Army Corps of Engineers $_{\circledast}$

of Engineers® Mississippi Valley Division Mississippi River Commission Fatigue Evaluation of Bridges

Topics

- ✓ Criteria
- ✓ Background
- ✓ Design Procedures
- ✓ Inspection Procedures
- Evaluation Procedures
- ✓ Results

Mississippi River Commission

Fatigue Evaluation of Bridges

References

- 1. Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges (The Manual)
- 2. AASHTO LRFD Bridge Design Specifications
- 3. FHWA Bridge Inspector's Reference Manual
- NCHRP Report 299, Fatigue Evaluation Procedures for Steel Bridges
- 5. Fracture and Fatigue Control in Structures, Barsom & Rolfe
- 6. 23 CFR Part 650 National Bridge Inspection Standards (NBIS)
- 7. ER 1110-2-111, Periodic Safety Inspection And Continuing Evaluation Of USACE Bridges

NBIS

- ✓ Inspection Procedures
- ✓ Inspection Frequencies
- ✓ Inspector Qualifications
- ✓ References The Manual

The Manual

- ✓ Inspection Procedures
- Evaluation Criteria
- ✓ References the Bridge Design Specifications

CRITERIA

Bridge Design Specifications

- ✓ Fatigue Detail Categories
- ✓ Fatigue Strengths

CORPS, ER 1110-2-111

- ✓ Update Jan. 06
- ✓ Comply w/ Revised NBIS

BACKGROUND

Evaluation Methods

- ✓ Stress Life
- ✓ Strain Life
- ✓ Fracture Mechanics

Fatigue Types

- ✓ Load Induced
- Distortion Induced

Load Cycles

- ✓ Variable Amplitude
- Constant Amplitude

EVALUATION METHODS

Stress Life

- Strengths Based on Testing
- Fatigue strengths computed for a variety of components
- ✓ Strength is in terms of allowable stress vs. load cycles

Advantages

- ✓ Simple to Use
- ✓ Better Results for Long Life (Large N) & Constant Amplitude
- ✓ Large Amount of Data Available

Disadvantages

- Empirically Based, Limited to Testing Conducted
- Plastic Strains Ignored
- ✓ No Differentiation between Crack Initiation and Propagation

EVALUATION METHODS

Strain Life

- ✓ Strengths Based on Testing
- Fatigue strengths computed for a variety of components
- ✓ Accounts for Stress-Strain Response of Material

Advantages

- ✓ Accounts for Plastic Strain, Residual Stress
- Considers Cumulative Damage under Variable Amplitude
- Results can be Extrapolated to Complicated Geometries

Disadvantages

- More complicated (Numerical Integration Techniques)
- ✓ Accounts Only for Initiation Life

EVALUATION METHODS

Fracture Mechanics

✓ More Theory Oriented

Advantages

- ✓ Predicts Crack Growth, Failure
- Allows Monitoring of Cracks
- ✓ Gives Better Insight Into Behavior

Disadvantages

- ✓ Crack Size Must Be Known
- ✓ More Complex Analyses Required

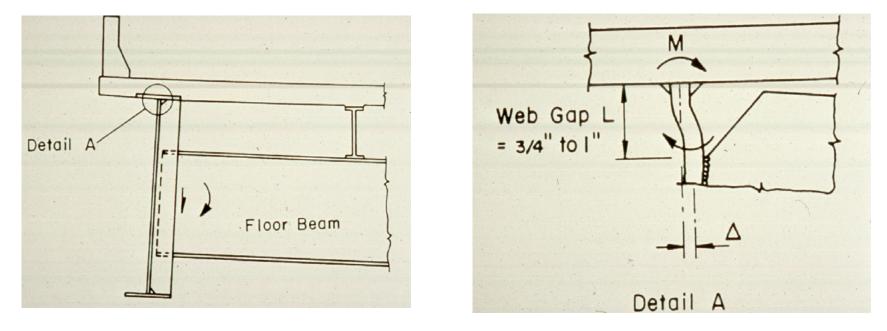
BACKGROUND

FATIGUE TYPES

Load Induced

- ✓ In Plane Stresses
- ✓ Accounted For In Design
- ✓ Detail Sensitive

Distortion Induced


- Secondary Stresses
- ✓ Not Accounted For In Design
- ✓ Detail Sensitive

FATIGUE TYPES

Distortion Induced Examples

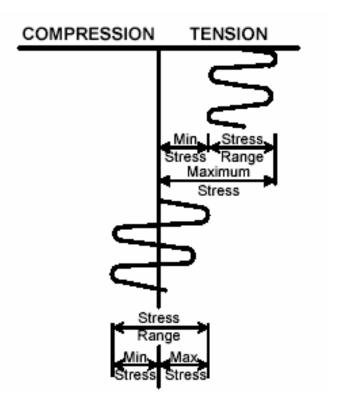
LOADING TYPES

LOADING TYPES

Constant Amplitude

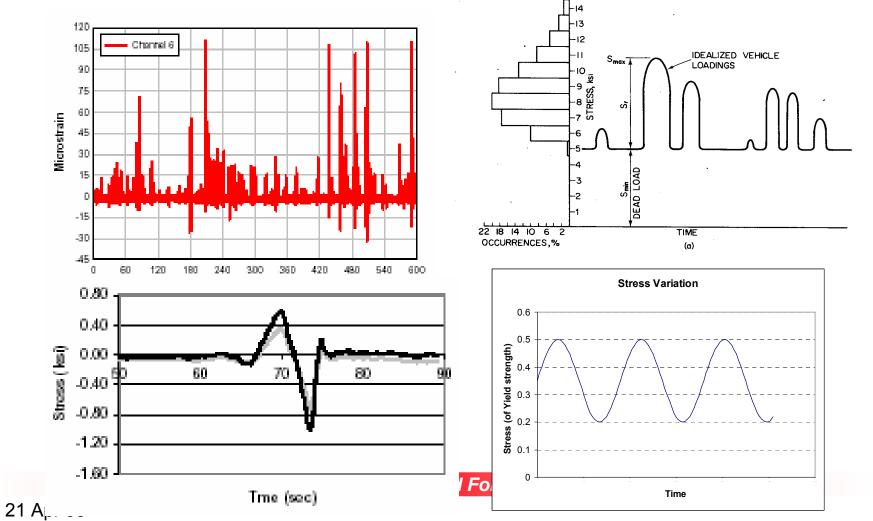
- ✓ Stress Range Does Not Vary
- Test Applications

Variable Amplitude


- Random Sequence of Load History
- Realistic Behavior

LOADING TYPES

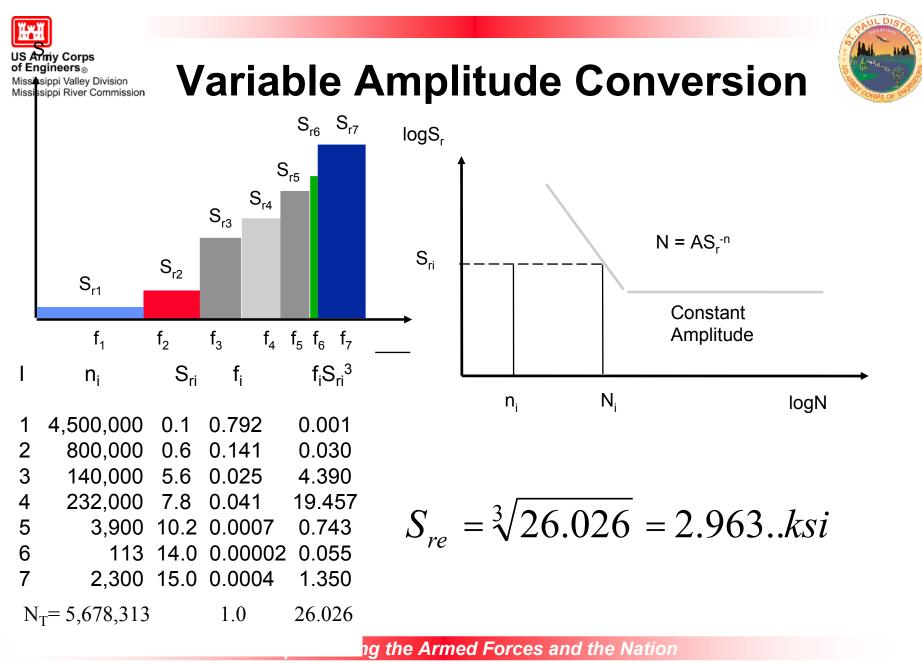
Constant Amplitude



LOADING TYPES

Variable Amplitude

14



Variable Amplitude

Conversion to Constant Amplitude

- ✓ Compute Effective Stress
 - Equivalent constant amplitude stress range that produces the same fatigue damage as a variable amplitude spectrum
 - Effective stress range based on fatigue tests under simulated traffic
- ✓ Miner's Law
 - The fatigue damage caused by a given number of cycles of effective stress range (constant amplitude cycles) is the same damage caused by an equal number of variable stress ranges (variable amplitude).
 - ✓ Root Mean Cube (Log S vs. Log N fatigue curve)

21 Apr 05

BACKGROUND

AASHTO METHOD

Load Induced Fatigue

- ✓ Uncracked, Unrepaired Members
- ✓ Does not consider distortion, corrosion, or other damage

Stress Life Approach

- ✓ S-N Curves
- Constant Amplitude Stress Ranges

Reliability Based Philosophy

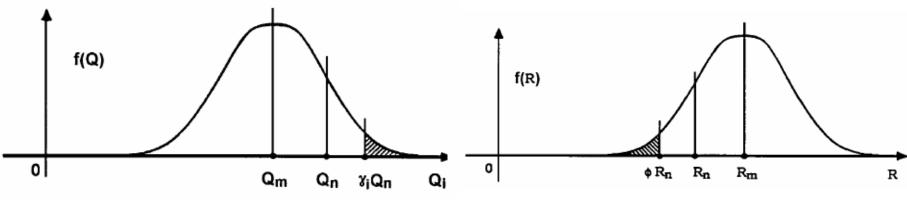
- Statistics
- 🗸 Data
- ✓ Variables

AASHTO METHOD

<u>RELIABILITY</u>

Random Variables

✓ Stress

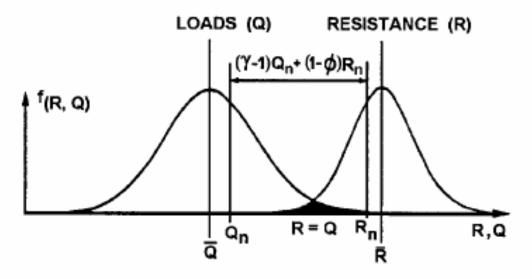

- Loads (truck weights, axle configurations, weight distribution, impact, multiple presence)
- Load Distribution (analysis methods & assumptions, bridge behavior)
- Section Properties
- ✓ Load Cycles
 - ✓ Traffic Volume
 - ✓ Stress Cycles
- ✓ Fatigue Strengths
 - Details (Real vs. Modeled)
 - Tests (Real vs. Laboratory)

AASHTO METHOD

TARGET RELIABILITY

Loads

Resistance


Probability Density Function

AASHTO METHOD

TARGET RELIABILITY

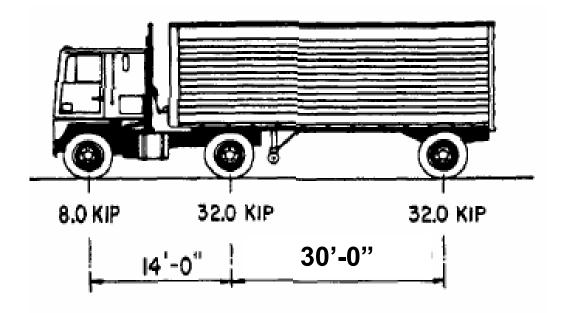
Loads Vs. Resistance

Probability Density Function

AASHTO METHOD

TRAFFIC LOADING

Fatigue Truck


- ✓ HS20 Truck with Constant 30' Spacing of Rear Axles
 - ✓ 0.75 Load Factor (54 kip)
 - ✓ Single Truck
 - ✓ Single Lane
 - Represent Typical Traffic
- ✓ WIM Studies
 - Effective Weight Calculated (Miner's Rule)
 - Used to Compute Constant Amplitude Loading Cycles

AASHTO METHOD

Fatigue Truck

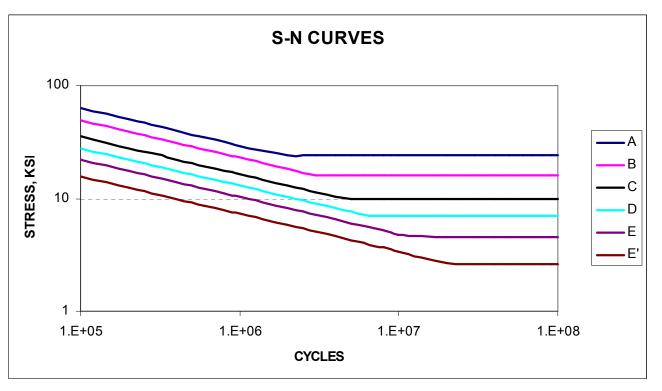
AASHTO METHOD

FATIGUE STRENGTHS

S-N Curves

- ✓ Test identical details at different effective stress ranges
- ✓ Typical Relationship for Steel: $S_r = AN^b$
- ✓ b = -1/3
- ✓ Log-Log Plot
- ✓ Threshold Limit

Stress Limit Influences

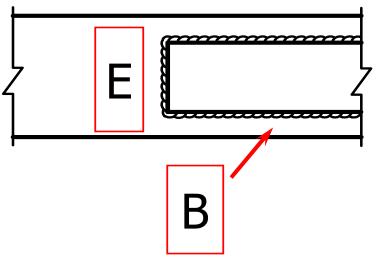

- Stress Concentrations
- Residual Stress

AASHTO METHOD

S-N Curves

AASHTO METHOD

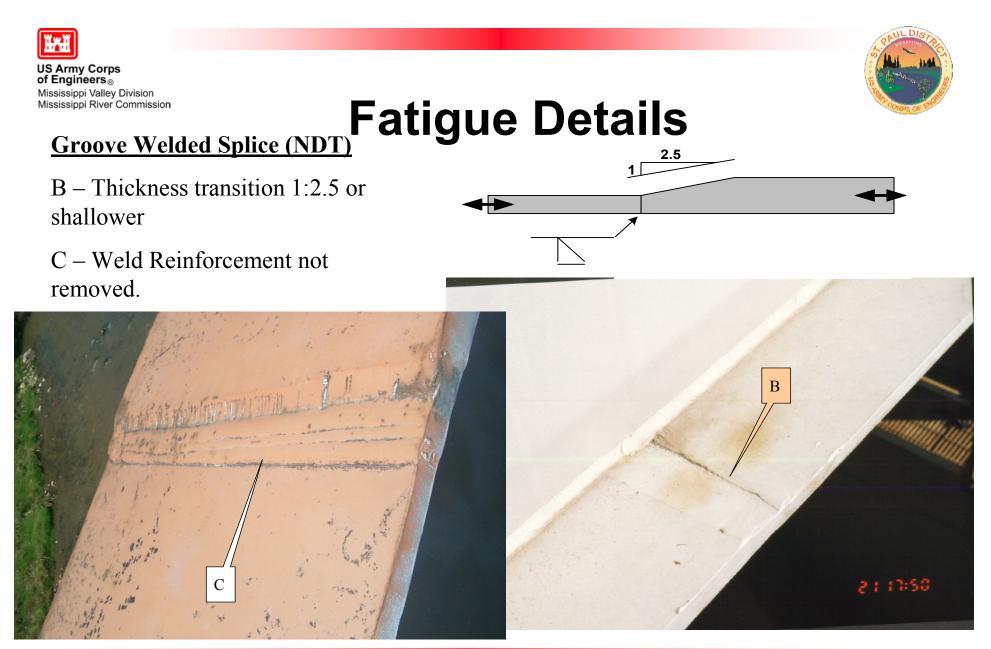
FATIGUE STRENGTHS


Fatigue Detail Categories

- ✓ 8 Categories (A-E')
- ✓ 11 General Conditions (Table 6.6.1.2.3-1)
 - Plain Members
 - ✓ Built-Up Members
 - ✓ Groove Welded Members
 - Fillet Welded Members

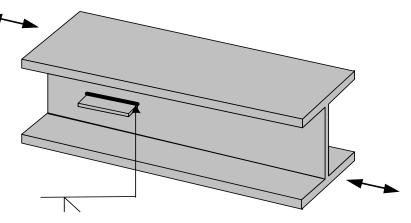
Fatigue Details

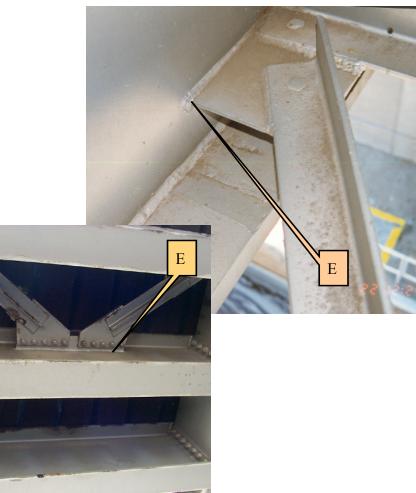
Builtup Member


B - Continuous fillet weld parallel to direction of applied stress

E – Base metal at ends of partiallength cover plates, narrower than flange, fl. Thickness < 0.8"

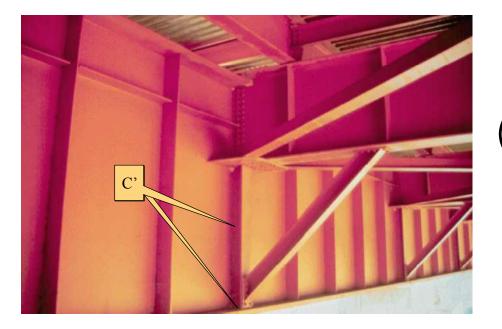
One Corps Serving the Armed Forces and the Nation

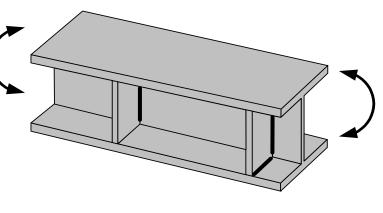

21 Apr 05



Fatigue Details

Longitudinally Loaded Fillet Welds


- E Detail Length > 12t or 4"
- E –No transition radius

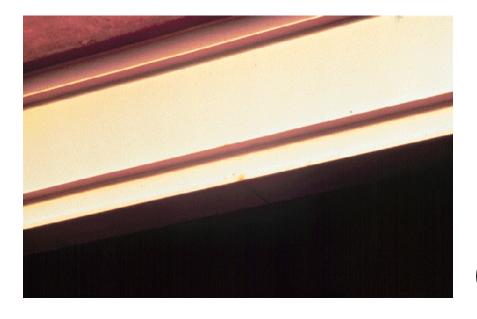


Fatigue Details

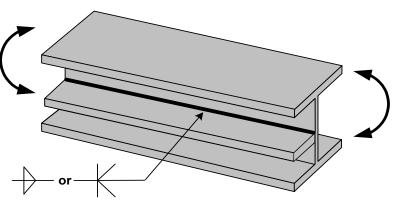
Category C'

<u>Fillet Weld Connections, Welds Normal to Direction of</u> <u>Stress</u>

C' – At toe of stiffener to flange or stiffener to web


One Corps Serving the Armed Forces and the Nation

21 Apr 05



Fatigue Details

Builtup Member

B - Continuous welds parallel to direction of applied stress

Category B

Fatigue Details

Mechanical Connections

B – Bolted

D – Riveted

Category B

Category D

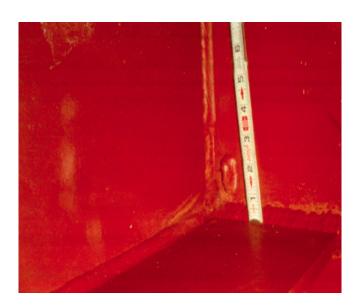
One Corps Serving the Armed Forces and the Nation

21 Apr 05

Fatigue Details

Category N (Not Allowed)

Noncompliant Weld


Cracked Weld

Fatigue Details

Category N (Not Allowed)

Triaxial Constraints

Excessive Corrosion

Fatigue Details

Category N (Not Allowed)

<u>Transversely Loaded Partial</u> <u>Penetration Groove Welds</u>

One Corps Serving the Armed Forces and the Nation

21 Apr 05

DESIGN PROCEDURES

Design Equation $\lambda(\Delta f) \le \varphi(\Delta F)_n$ $\lambda = 0.75 \quad \varphi = 1.0$

 (Δf) = Live Load Stress Range

 $(\Delta F)_n$ = Nominal Fatigue Resistance

Design Procedures

- 1. Identify Fatigue Detail Category (C-E')
- 2. Apply Load Single Truck, Single Lane, Max Effect
- 3. Distribute Load Single Lane Load Distribution Factors
- 4. Apply Impact Factor (1.15)
- 5. Compute Section Properties Short-Term Composite
- 6. Compute Stress at Detail M/S, P/A
- 7. Compute Constant Amplitude Cycles 75 year life
 - N=365(75)n(ADTT)_{SL}
- 8. Compute Nominal Strength (Fatigue Resistance)

One Corps Serving the Armed Forces and the Nation

21 Apr 05

DESIGN PROCEDURES

7. N=365(75)n(ADTT)_{SL}

 N = No. of Stress Range Cycles per Truck

Table 6.6.1.2.5-2 Cycles per Truck Passage, n		
Longitudinal Members	> 40.0 ft.	< 40.0 ft.
Simple Span Girders	1.0	2.0
Continuous Girders		
1) near interior support	1.5	2.0
2) elswhere	1.0	2.0
Cantilever Girders	5.0	
Trusses	1.0	
Transverse Members	Spacing	
	> 20.0 ft.	< 20.0 ft.
	1.0	2.0

DESIGN PROCEDURES

7. N=365(75)n(ADTT)_{SL}

• (ADTT)_{SL}= p·ADTT

Table 3.6.1.4.2-1 Fraction of Truck Traffic in a Sinple lane, p		
Number of Lanes		
Available to Trucks	р	
1	1.00	
2	0.85	
3	0.80	
>3	0.80	

Table C3.6.1.4.2-1 ADTT		
Class of Highway ADTT		
Rural Interstate	0.20	
Urban Interstate	0.15	
Other Rural	0.15	
Other Urban	0.10	

DESIGN PROCEDURES

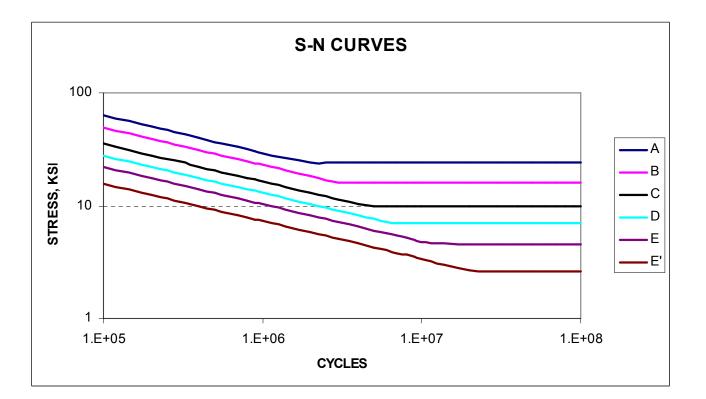
Design Procedures

8. Compute Nominal Strength (Fatigue Resistance)

 $(\Delta F)_{TH}$ = Constant Amplitude Fatigue Threshold

$$(\Delta F)_n = \left(\frac{A}{N}\right)^{\frac{1}{3}} \ge \frac{1}{2}(\Delta F)_{TH}$$

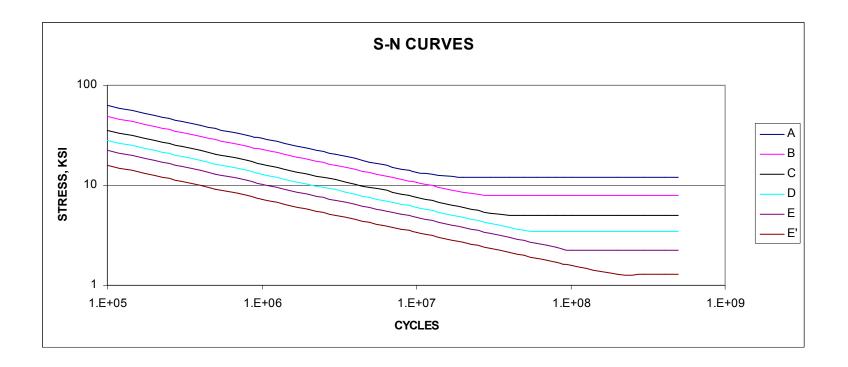
Table 6.6.1.2.5-1 Detail Category Constant, A		
DETAIL CATEGORY	A (10 ⁸ ksi)	
A	250.0	
В	120.0	
B'	61.0	
С	44.0	
C'	44.0	
D	22.0	
E	11.0	
E"	3.9	


Table 6.6.1.2.5-3		
Constant-Amplitude	Fatigue Thresholds	
DETAIL		
CATEGORY	Threshold (ksi)	
A	24.0	
В	16.0	
B'	12.0	
С	10.0	
C' 12.0		
D	7.0	
E	4.5	
E"	2.6	

One Corps Serving the Armed Forces and the Nation

21 Apr 05

DESIGN PROCEDURES


 ΔF

- Assures the maximum applied stress range will always be less than the constant-amplitude fatigue threshold.
- This provides a theoretically infinite fatigue threshold.
- The maximum applied stress range is assumed to be twice that computed from a passage of the fatigue truck.

DESIGN PROCEDURES

DESIGN PROCEDURES

Other Considerations

Transversely Loaded Fillet Welds

See Additional Equation

Members Under Dead Load Compression Consider if Fatigue LL Tensile Stress > ½ DL Compressive Stress

INSPECTION PROCEDURES

Preparation

- ✓ Review As-Builts
- ✓ Identify Fatigue Details
- ✓ Identify FCMs
- Provide Proper Access

Inspection/Documentation

- Locate fatigue sensitive details and Identify category
- Inspect for cracks or signs of cracks
- Inspect for noncompliant weld quality
- ✓ Inspect for excessive corrosion
- ✓ Inspect for other discontinuities (copes, nicks, gouges. Etc.)
- Identify Intersecting welds
- Identify Details (distortion, end restraints)
- ✓ Emphasis on FCMs (NDT)

INSPECTION PROCEDURES

End Restraint

EVALUATION PROCEDURES

Two Levels of Evaluation

- ✓ Infinite Life
- ✓ Finite Life

Fatigue Life Determinations

- ✓ Design Life
- ✓ Evaluation Life
- Mean Life

EVALUATION PROCEDURES

Stress Ranges

- ✓ AASHTO Fatigue Truck
- ✓ Truck Traffic Surveys
- ✓ Measured Effective Stresses

EVALUATION PROCEDURES

Truck Traffic Surveys

- ✓ Weigh Stations
- ✓ Weigh In Motion (WIM) Studies

$$W = 500(\frac{LN}{N-1} + 12N + 36)$$

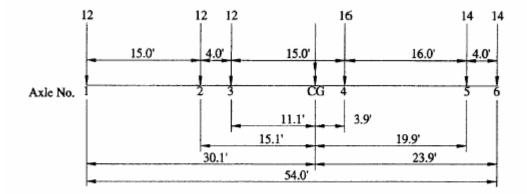


Figure B.6-4 Type 3-3 Unit WEIGHT = 80 kips (40 tons).

EVALUATION PROCEDURES

EVALUATION PROCEDURES

Weigh In Motion (WIM) Studies

- ✓ Bending Plates
- ✓ Load Cells
- ✓ Wire Loops
- ✓ Number of Trucks
- ✓ Axle Weights
- ✓ Axle Spacing
- Equivalent Fatigue Truck

Weigh In Motion (WIM) Studies

EVALUATION PROCEDURES

Effective Stresses

$$(\Delta f)_{eff} = R_s \Delta f$$

Measured Effective Stresses

✓ Miner's Rule

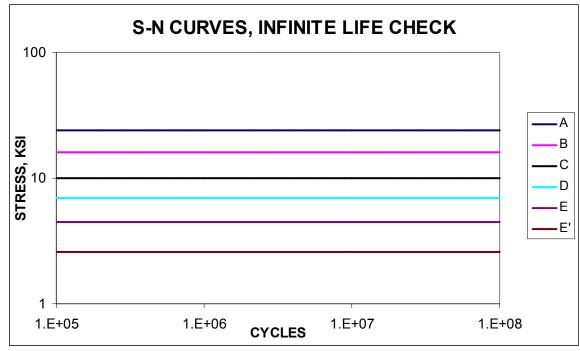
$$(\Delta f)_{eff} = R_s \left(\Sigma \gamma_i \Delta f_i^3 \right)^{\frac{1}{3}}$$

Partial Load Factors

$$R_s = R_{sa}R_{st}$$

- ✓ Uncertainty in Stress Range
- Uncertainty in Analysis Methods
- Uncertainty in Truck Weight

Table 7-1, Partial Load Factors: R_{sa} , R_{st} , and R_{s}			
Evaluation Method	Analysis, R _{sa}	Truck Weight, R _{st}	Stress Range Estimate, R _s
	Evaluation or Minim	um Fatigue Life	
SR: Simplified Analysis TW: AASHTO Fatigue	1.0	1.0	1.0
SR: Simplified Analysis TW: WIM	1.0	0.95	0.95
SR: Refined Analysis TW: AASHTO Fatigue	0.95	1.0	1.0
SR: Refined Analysis TW: WIM	0.95	0.95	0.90
SR: Field Measurements	NA	NA	0.85
Mean Fatigue Life			
All Methods	NA	NA	1.0


Mississippi River Commission

EVALUATION PROCEDURES

Infinite Life Check

$$(\Delta f)_{\max} \le (\Delta F)_{TH} \qquad (\Delta f)_{\max} = 2.0 (\Delta f)_{eff}$$

EVALUATION PROCEDURES

🗸 Design (Minimum) Life	2σ	0.98
 Evaluation Life 	1σ	0.85
 Mean Life 	0σ	0.50

$$Y = \frac{R_R A}{365n(ADTT)_{SL}((\Delta f)_{eff})^3}$$

Y = Total Years Remaining Life = Y-Present Age

One Corps Serving the Armed Forces and the Nation

21 Apr 05

EVALUATION PROCEDURES

Resistance Factors

Table 7-2, Resistance Factor, R _R			
	Minimum (Design)		
Detail Category	Life	Evaluation Life	Mean Life
A	1.0	1.7	2.8
В	1.0	1.4	2.0
B'	1.0	1.5	2.4
С	1.0	1.2	1.3
C'	1.0	1.2	1.3
D	1.0	1.3	1.6
E	1.0	1.3	1.6
E'	1.0	1.6	2.5

EVALUATION PROCEDURES

Estimating Stress Cycles

- ✓ ADTT Single Lane
 - ✓ Figure C7-1
- ✓ No. of Cycles per Truck
 - ✓ Same as Design
 - Influence Lines
 - Field Measurements

EVALUATION PROCEDURES

Influence Lines

Mississippi River Commission

EVALUATION PROCEDURES

Other Considerations

- ✓ Riveted Details
 - Category C instead of D (Design)
- ✓ Compressive Stresses
 - ✓ LL Tensile Stress must be at Least Twice DL Comp.
 - Consider Load used in the Evaluation

RESULTS

When to Evaluate:

- ✓ Detail Categories C-E'
- ✓ Consider Traffic
- ✓ Consider Stresses
- Consider Consequences
- ✓ <u>Document</u>

If Results Are Unacceptable:

- ✓ Refine Analyses Parameters
 - Balance Costs vs. Savings
- Access Risk and Consequences
 - Increase Monitoring
- ✓ Retrofit