

US Army Corps of Engineers ®

2005 Tri-Service Infrastructure Systems Conference & Exhibition St. Louis, Missouri 2-4 August 2005

SBEDS (Single degree of freedom Blast Effects Design Spreadsheets)

Dale Nebuda, P.E. U.S. Army Corps of Engineers Protective Design Center

US Army Corps of Engineers ®

Presentation Outline

Background & general description

SBEDS technical capabilities

- > Tour of workbook
- > Obtaining SBEDS
- Future enhancements

US Army Corps of Engineers ® Background

- Implementation of DoD antiterrorism construction standards requiring more blast design of 'conventional' facilities
- Existing blast resistant structural design tools developed for design of more robust structures and are cumbersome for design of more conventional structures
- USACE Protective Design Center, through Baker-Risk, developed SBEDS as a designer friendly tool for more typical construction
- SBEDS v1.0 released May 2004, v2.0 released June 2005

SBEDS - General

- US Army Corps of Engineers ®
 - SBEDS is an Excel[©] workbook that combines all steps to design/analyze a wide variety of blast-loaded structural components
 - User inputs basic information related to geometry, boundary condition, material property, response mode, & blast load for component
 - SBEDS calculates equivalent SDOF parameters & determines dynamic response w/ time-stepping SDOF calculator
 - > 11 types of structural components available
 - Also allows for input of general SDOF system
 - Outputs maximum response parameters and response history plots

SBEDS – General (continued)

- US Army Corps of Engineers ®
 - > Also performs shear check
 - stirrup design for concrete & CMU components
 - Iteratively develops pressure-impulse (P-i) relationship and associated charge weight-standoff diagrams
 - > Designated metric or english units
 - Detailed Users Guide hot-linked to workbook
 - Based on Army TM 5-1300 & UFC 3-340-01 guidance but draws on other sources for best methodologies

Available Component Types

- > One-way corrugated metal panel
- > One-way or two-way steel plate
- Steel beam or beam-column
- > One-way open-web steel joist
- > One-way or two-way reinforced concrete slab
- Reinforced concrete beam or beam-column
- Prestressed concrete beam or panel
- One-way or two-way reinforced masonry
- One-way or two-way unreinforced masonry
- One-way or two-way wood panel
- One-way wood beam or beam-column
- General SDOF system

Available Response Modes

- Flexure
- Tension membrane
- Compression membrane
- > Brittle flexure w/ axial load softening
- > Arching with gap & non-solid section
- General

Flexure Resistance Functions

US Army Corps of Engineers ®

- **TM 5-1300/UFC 3-340-01**
- > All components

Option for shear based resistance for concrete slabs & masonry elements

DEFLECTION Indeterminate Boundary Conditions (Solid Curve Used for Flexure Only) (Dashed Curve for Flexure and Tension Membrane)

Figure 4. Resistance-Deflection Curve For Flexural Response

US Army Corps of Engineers ®

Tension Membrane Resistance Function

UFC 3-340-01

One-way corrugated metal panel > One-way or two-way steel plate Steel beam or beam-column

Equation 2

A = component cross sectional area within loaded width b

US Army Corps of Engineers ®

Compression & Tension Membrane Resistance Function

- ➢ UFC 3-340-01
- User's option to consider compression only, tension only, or both
- One-way or two-way RC slab
- **RC** beam or beam-column
- One-way or two-way reinforced masonry

Figure 18. Resistance-Deflection Curve for Reinforced Concrete and Masonry Components with Compression and Tension Membrane (from UFC 3-340-01)

Brittle Flexure w/ Axial Load Softening Resistance Function

US Army Corps of Engineers ®

Wall Analysis Code (WAC) > One-way or two-way unreinforced masonry

Figure 25. Resistance-Deflection Curves for Unreinforced Masonry with Brittle Flexural Response and Axial Load From WAC Program

$$r_3 = \frac{4}{L^2} \left(h - \Delta \right) \left(P + \frac{WL}{2} \right)$$

Equation 7

where:

 $\begin{array}{l} r_3 = maximum \ resistance \ from \ axial \ load \ effects \\ x_3 = \ flexural \ deflection \ at \ r_2 + \ (r_3 - r_2) / K_{ep} \end{array}$

 K_{ep} = elastic-plastic stiffness for indeterminate components, otherwise equal to elastic stiffness

Protective

Design

Center

- h = overall wall thickness
- P = input axial load per unit width along wall, P_{axial}
- W = areal self-weight and supported weight of wall
- L = span length equal to wall height

US Army Corps of Engineers ®

Arching With Gap & Non-Solid Cross Section Resistance Function

- Park and Gamble's <u>Reinforced Concrete</u> <u>Slabs</u> modified for gap between wall and rigid support for non-solid cross section
- One-way or two-way unreinforced masonry

Figure 26. Arching Resistance-Deflection Curve

General Resistance Function

US Army Corps of Engineers ®

- > Up to 5 segments
- Systems with or without 'softening'
- Different stiffness in rebound allowed

 Rules for rebound stiffness in systems using compressive membrane and arching

Figure 2. General Resistance-Deflection Diagram Without Softening

Figure 3. Typical Resistance-Deflection Diagram With Softening (See Figure 2 and Table 1 for Definition of Terms in Figure)

Available Boundary Conditions

- > One-way components
 - Cantilever
 - Fixed-fixed
 - Fixed-simple
 - Simple-simple (only condition for open web joists)
- > Two-way components
 - Four sides supported (all fixed or all simple)
 - Three sides supported (all fixed or all simple)
 - Two adjacent sides supported (both fixed or both simple)

US Army Corps of Engineers ®

Available Loadings

> Uniform loading for all components

- Concentrated loads for beam or beam-column components
 - load at free end of cantilevered elements
 - load at midspan for all other support conditions
- **≻ Ρ-**Δ
 - RC components except prestressed
 - Reinforced masonry
 - Unreinforced masonry
 - Wood beam or beam-column
 - General SDOF

US Army Corps of Engineers ®

Equivalent P-A Load

- ➤ SBEDS calculates the lateral force on component causing same maximum moment as P-∆ effect at each time step
 - $P-\Delta$ load based on axial load, geometry, and boundary conditions/load type of component and deflection at each time step
- ➢ Equivalent P-∆ load history is added to input load history and separately plotted in output
- Approach is consistent with other dynamic analyses methods considering P-Δ effects including FEA based approaches

- > ReadMe sheet
- > Intro sheet
- > Input sheet
- > Results sheet
- P-i Diagram sheet
- > SDOF Output sheet

- > SDOF sheet (hidden)
- > Database sheet
- Positivephasedload sheet (hidden)
- Negativephaseload sheet (hidden)
- > Wait sheet

- ReadMe sheet
 - General admin info
 - Support info
- > Intro sheet
- > Input sheet
- Results sheet
- P-i Diagram sheet
- SDOF Output sheet

- SDOF sheet (hidden)
- Database sheet
- Positivephasedload sheet (hidden)
- Negativephaseload sheet (hidden)
- > Wait

US Army Corps of Engineers ®

ReadMe sheet

- > Intro sheet
 - Component selection
 - Units selection
 - Workbook instructions
 - Discussion of workbook design
- > Input sheet
- Results sheet
- P-i Diagram sheet
- SDOF Output sheet

- SDOF sheet (hidden)
- Database sheet
- Positivephasedload sheet (hidden)
- Negativephaseload sheet (hidden)
- > Wait

- ReadMe sheet
- Intro sheet
- > Input sheet
 - Discussed later
- > Results sheet
 - Discussed later
- P-i Diagram sheet
 - Discussed later
- SDOF Output sheet
 - Sample shown later

- SDOF sheet (hidden)
- Database sheet
- Positivephasedload sheet (hidden)
- Negativephaseload sheet (hidden)
- > Wait

- ReadMe sheet
- Intro sheet
- > Input sheet
- > Results sheet
- P-i Diagram sheet
- > SDOF Output sheet

- > SDOF sheet (hidden)
 - Time-stepping SDOF solution
- Database sheet
 - Properties of library members
 - SDOF constants
- Positivephasedload sheet (hidden)
- Negativephaseload sheet (hidden)
- > Wait

Input Sheet (Steel Beam or Beam-Column)

Component Input

Gosponent:	Configuration									
		Steel Bean	or Beam-Col							
Configuration	50 tt		Manual input		50 ft					
psong, B: oundary Conditions.	23 ± red, Uniformiy Loaded		ravity Displace Spacing, B:		20 ft		•			
esponse Type. Floxural			Boundary Conditions:	Fixed-Fixed,	Jniformly Loaded	-	•			
Structural & Material P			ressure-Tin	Flexural	,		•			
Axis of Bending Brong (X-X)	Shape: W12050	- etrieve	Time Response Type:			-				
orl-Weight, w.: Armen: of Inertia, I:	50.0 lb/t 394 in*		Structura	l & Material Prop	erties					
estion Modulus: Z (hot-rolled beam) or S (cold-formed beam)	72.4 m ³	Save	20							
Veb Thickness, ty: icph, d	0.37 in 12.13 in		Axis of Bending:		Shape:		•			
(es), A	14.73 in ²	IN SDOF	Strong (X-X)		W12X50	~	•			
upported Weight, W: oaded Area Factor - Enter 1.0 for Uniform Load	3 pet 1		🚿 🕒 Self-Weight, w:		50.0 lb/ft					
phound Unbraced Length for Compression Flange, L _{try} Rebound Unbraced Length for Compression Flance, L _{try}	C th (1) for fully bro				394 in*					
· · · · · · · · · · · · · · · · · · ·	C ft () for fully brs 672, 4629 (All Gr. 50) rolled shapes		147							
field Strangth. (j.) Itimate Strangth. (j.)	50,000 pel 70,000 pei		Section Modulus: Z (hot-rolled beam) or S (c	old-formed beam):	72.4 in ³					
nomote serongen, ty Bastio Modulus, E:	/0.000 pei 28000000 pei		Blast Lose Phase Web Thickness, t _w :		0.37 in		•			
facio Strength Increase Factor: Imamic Increase Factor:	1.05		wave Weight Load Depth, d:		12.19 in		•			
lynamic Indeese nador. lynamic Yield Stress, (_g .:	62,475 pei		Not without C		14.70 in ²					
nial Load for Compression P-delts Effects; P. (Note: P>=0)	C Ib		A escrated Area, A:							
exwe Blank nave Blank	C #		Supported Weight, W:		<mark>3</mark> psf					
Calculated Proper	tios		Loaded Area Factor - Enter 1.0 for Uniform L	oad	1		•			
Ibourd Moment Capacity, M.: Rebourd Moment Capacity, M.:	4,623,190 lb-in 4,523,190 lb-in		Inbound Unbraced Length for Compression Flange, Lpr.		0 ft (0 for fully	hraced)	•			
Rebound Inbound Moment Capacity Ratio, MR	1.00		Load file m							
		l 🔮 l	Rebound Unbraced Length for Compression	Flange, L _{br,r}	0 ft (0 for fully	braced)				
		COE Response	Input Design Only Steel Type:	A529 (All Gr. 50) rolled sha	oes 🛨					
		Limits	Yield Strength, fv:		50,000 psi	_	25			
			100 100		, ,		•			
Error/Warning Messages			Ultimate Strength, fu:		70,000 psi		•			
			 Elastic Modulus, E: 		29000000 psi					
			 Static Strength Increase Factor: 		1.05					
<u>votas:</u> Used for clearing of reflected load			_							
Angle in degrees from normal			 Dynamic Increase Factor: 		1.19		•			
			Dynamic Yield Stress, f _{dy} :		62,475 psi		•			
			Axial Load for Compression/P-delta Effects;	P: (Note: P>=0)	0 lb		•			
				F. (NOIO. F >- V)						
					0.0					
			Leave Blank		0 ft					
					0 lb					
			Leave Blank	ulated Propertie	0 lb		•			
			Leave Blank	ulated Propertie	0 Ib S		Desta			
			Leave Blank Calc Inbound Moment Capacity, M _i :	ulated Propertie	0 lb		Protec			
			Leave Blank	ulated Propertie	0 Ib S					
			Leave Blank Calc Inbound Moment Capacity, M _i :		<mark>0</mark> lb s 4,523,190 lb-in		Protec Desig Cente			

SBEDS Drop-Down Menus

- US Army Corps of Engineers ®
 - Support conditions
 - > Response mode
 - Beam sizes (AISC and cold-formed girts/purlins)
 - > Open web steel joist sizes (K and LH series)
 - Masonry (Brick, European block, Heavy-Medium-Lightweight CMU)
 - Corrugated metal panel sizes (MBCI and Vulcraft sizes, traditional and standing-seam deck)
 - > Typ. steel plate, beam, and rebar material properties
 - All drop-downs automatically insert properties of selected size/type into spreadsheet
 - User-defined option available for all drop-down menus

Calculated Resistance-Deflection Relationship on Input Sheet

Loading Input

Loading Options

- Directly input up to 8 time-pressure pairs defining a piecewise linear pressure history
- User inputs charge weight and standoff distance
 - Pressure history for hemispherical surface burst is calculated based on Kingery-Bulmash parameters
 - Side-on or reflected load
 - angle of incidence can be specified for reflected loads
 - With or without negative phase
 - With or without clearing effects
- User designated file with up to 2,000 time-pressure pairs
 - One time-pressure pair separated by commas per line
 - Consistent with DPLOT file saved using the ASCII file option
- Member orientation

SBEDS Generated Loading

- Exponential decay in positive phase pressure-history using curve-fit to decay constant from CONWEP
- Curve-fit to negative phase using method from Navy document "Blast Resistant Structures, Design Manual 2.08, December 1986" (see below)

Solution Options

Solution Options (continued)

- Response limits/level of protection desired (optional)
 - Does not effect calculations, bookkeeping aid
- Dynamic shear constants (optional)
- Damping
 - 0.05% of critical used by default, greater values can be input
- > Initial velocity
- > Time step (recommended value provided)

US Army Corps of Engineers ®

Recommended Time Step – Smallest Value Based On:

- > 10% of the natural period
- 10% of the smallest time increment in a manually input blast load
- 3% of the equivalent triangular positive phase duration or 1.5% of the equivalent triangular negative phase duration of an input charge weightstandoff blast load
- 3% of the smallest calculated time between local maxima and minima points of a input blast load file
- The total 2900 time steps in the time-stepping SDOF method in SBEDS divided by 8 natural periods (but not less than 0.01 ms)

General Commands

US Army Corps of Engineers ®

SDOF Solver in SBEDS

- Constant velocity integration method used to numerically solve SDOF equation of motion at each time step
 - Very stable solutions if small enough time step used
- 2900 time steps in program so very small time steps are usually recommended (less than 1 ms)

US Army Corps of Engineers ®

Validation

- Generally within 1%-2% when checked against the SOLVER and WAC codes for numerous cases (27) with multiple yield and stiffness combinations
- Constant velocity method has also been validated against finite element calculations performed by BakerRisk

		SDOF M	lodel	ADINA		
Analysis Description	Response Range	Maximum Displacement (in)	Time of Max. Displacement (msec)	Maximum Displacement (in)	Time of Max. Displacement (msec)	Percent Difference
Rectangular Beam	µ=3	5.507	35	5.232	33	5.0
	u=10	17.17	51	15.19	47	11.5
	, µ=20	33.73	65	28.58	58	15.3
	μ=20	26.11 SDOF based on Z	55	28.58	58	-9.5
I-Shaped Beam (W8x24)	Elastic	2.297	23	2.250	24	2.0
	u=2	5.962	29	5.853	29	1.8
	u=10	29.81	51	26.26	47	11.9
	µ=20	59.55	66	49.98	58	16.1

US Army Corps of Engineers ® **SBEDS** Output

Maximum deflection and resistance in inbound/outbound response

- Maximum support rotation, ductility ratio, strain rate(s), and equivalent static and dynamic shears
- ➢ Response history plots for deflection, resistance, equivalent P-∆ load, and dynamic shear and resistance-deflection plot

SBEDS Results Summary

SBEDS Detailed Output (Results Sheet)

US Army Corps of Engineers ®

Resistance – Displacement Function

US Army Corps of Engineers ®

SDOF Output Sheet

US Army Corps of Engineers ®

Time	Applied Force	Equiv P-delta Force	Deflection	Velocity	Acceleration	Stiffness	Resistance
(ms)	(psi)	(psi)	(in)	(in/ms)	(psi/in)	(psi/in)	(psi)
0	3.729287	0	0	3.73E-09	0.048997282	0.14106173	0
0.2	3.681363	0	0.00097995	0.009799	0.048365391	0.14106173	0.00013823
0.4	3.633438	0	0.00389451	0.019409	0.047729923	0.14106173	0.00054937
0.6	3.585514	0	0.00871827	0.028892	0.047090922	0.14106173	0.00122981
0.8	3.53759	0	0.01542566	0.038246	0.046448435	0.14106173	0.00217597
1	3.489666	0	0.023991	0.047472	0.045802511	0.14106173	0.00338421
1.2	3.441742	0	0.03438843	0.056567	0.045153197	0.14106173	0.00485089
1.4	3.393817	0	0.04659199	0.065533	0.044500541	0.14106173	0.00657235
1.6	3.345893	0	0.06057557	0.074368	0.043844591	0.14106173	0.0085449
1.8	3.297969	0	0.07631294	0.083071	0.043185397	0.14106173	0.01076484
2	3.250045	0	0.09377772	0.091642	0.042523007	0.14106173	0.01322845
2.2	3.202121	0	0.11294343	0.100081	0.04185747	0.14106173	0.015932
2.4	3.154196	0	0.13378343	0.108386	0.041188836	0.14106173	0.01887172
2.6	3.106272	0	0.15627098	0.116557	0.040517155	0.14106173	0.02204386
2.8	3.058348	0	0.18037923	0.124593	0.039842475	0.14106173	0.02544461
3	3.010424	0	0.20608117	0.132494	0.039164848	0.14106173	0.02907017
3.2	2.9625	0	0.2333497	0.140259	0.038484323	0.14106173	0.03291671
3.4	2.914575	0	0.26215761	0.147888	0.037800951	0.14106173	0.03698041

P-i & CW-S Diagrams

US Army Corps of Engineers ®

P-i & CW-S Diagrams (cont.)

US Army Corps of Engineers ®

- User specifies ductility and/or support rotation for up to four levels of response
 - if ductility and support rotation are entered, the one resulting in the smallest deflection is used
- > Negative phase is optional
- User selects either P-i, CW-S for side-on loading, or CW-S for fully reflected loading
- > Clearing and angle of incidence are not considered
- SBEDS iterates to determine the charge weight and standoff resulting in the specified level of response and then plots either the P-i or CW-S point

SBEDS Availability

- Distribution Statement A Approved for public release; distribution is unlimited
- https://pdc.usace.army.mil/
- > Registration required (Armadillo protection)
- Limited support available
 - PDC website has FAQ, discussion forum, & issue tracker

Future

- Methodology manual
- > Routine to transfer graphic output to DPLOT
- Additional boundary condition options for 2way concrete, steel, and masonry slabs and plates
- Cavity wall component (unreinforced masonry)
- Metal stud w/ fascia component
- > Account for openings in two-way members

Summary

- SBEDS is a valuable tool for implementing DoD antiterrorism standards
- Designer friendly tool for conventional construction that combines all steps to design/analyze a wide variety of blast-loaded structural components
- SBEDS calculates single degree of freedom (SDOF) response for 11 types of structural components
 - Also allows for input of general SDOF system
- Based on Army TM 5-1300 &UFC 3-340-01 guidance but draws on other sources for best methodologies
- Approved for public release and available from <u>https://pdc.usace.army.mil/</u>

CEDAW (<u>Component Explosive D</u>amage <u>A</u>ssessment <u>W</u>orkbook)

Background

US Army Corps of Engineers ®

- DODI 2000.16 requires vulnerability assessments of installations that include the consideration of explosive threats
- P-i methodology provides a means of rapidly assessing expected damage to structural components
- Many blast assessment tools utilize the P-i methodology in the PDC FACEDAP (1991)
- Recent developments have left FACEDAP 'dated'
 - refined SDOF techniques considering more complex response modes
 - more test data for component response to blast loads
 - better understanding of importance of the negative phase
- These factors accounted for in CEDAW, as well as incorporation of the new DOD definitions for LOP

CEDAW Methodology

- P-i relationships developed from scaled relationships specifically for defined DoD levels of protection
- Near instantaneous results (not an iterative process as used in SBEDS)

CEDAW Components

US Army Corps of Engineers ®

- One-way corrugated metal panel
- Steel beam or beam-column
- Metal stud wall
- > Open-web steel joist
- One-way or two-way reinforced concrete slab
- Reinforced concrete beam
- One-way reinforced masonry
- One-way or two-way unreinforced masonry
- > Wood stud wall
- Steel column (assuming connection failure)*
- Reinforced concrete column

of Engineers ®

CEDAW P-i Output

Pso = 24.89 psi lso = 0.096 psi-sec Open Web Steel Joists P-i Diagram for test test Pr = 79.45 psi Range = 50 ft, Charge Weight = 500 lb TNT Ir = 0.246 psi-sec HLOP Upper Bound* MLOP Upper Bound* LLOP Upper Bound* Onset of Blowout* incident reflected 1000 Peak Positive Phase Pressure (psi) 100 10 1 0.1 0.1 0.01 1 *See "LOP descriptions" worksheet Peak Positive Phase Impulse (psi-sec) Protective Design Center

54

CEDAW CW-S Output

US Army Corps of Engineers ®

CEDAW Availability

- Distribution Statement A Approved for public release; distribution is unlimited
- <u>https://pdc.usace.army.mil/</u>
- > Registration required (Armadillo protection)
- Limited support available
 - PDC website has FAQ, discussion forum, & issue tracker

