Design of High Pressure Vertical Steel Gates Chicago land Underflow Plan Mc Cook Reservoir

By: Henry W. Stewart, P.E; Hassan Tondravi, P.E; Lue Tekola, EIT**

National Defense Industrial Association 2005 Tri-Service Infrastructure Systems Conferences & Exhibition

August 2-4, 2005

ACKNOWLEDGEMENT

- HENRY W. STEWART, P.E (USACE, CHICAGO DISTRICT)
- HASSAN TONDRAVI, P.E (INCA ENGINEERS, INC)

PRESENTATION OUTLINE

- INTRODUCTION
- *SLIDE* vs. *WHEEL GATE*
- HISTORICAL BACKGROUND
- DESIGN PROCEDURE WHEEL GATE
- DESIGN PROCEDURE SLIDE GATE
- DESIGN & MODEL RESULTS
- CONCLUSIONS
- QUESTIONS

INTRODUCTION

- *Mc Cook Project overview:*
 - Mc Cook Reservoir is (10.5 billion gallon/32,000 acrefoot) reservoir
 - Covers 252-square miles with 3-million people and 1.24million housing units.
 - Reservoir components: cut off walls, distribution tunnels, main tunnels, hydraulic structures, aeration system, wash down system and various types of gates/valves.
- *Definition*:
 - Wheel Gate
 - Slide Gate

WHEEL GATE vs. SLIDE GATE

• WHEEL GATE:

- Adv:
 - Used for large opening and high head
 - Relatively lower friction (Rolling friction)
 - Can maneuver trash clogging and jamming

- Disadvantage:

- Needs a higher precision to install
- Bulky and heavy

- SLIDE GATE:
 - Adv:
 - Can be used in intake/outlet tunnel

- Disadvantage:
 - Relatively higher friction (static friction)
 - Used only for smaller head and opening
 - Might jam-up with sediment.

HISTORICAL BACKGROUND GATES & VALVES

- Except Roosevelt, Arrowrock, Pathfinder, Buffalo Bill & Owyhee dams most gate before Hoover Dam have a capacity less than 150-feet head
- In 1908 5-feet by 10-feet slide gates installed at 220' head at Roosevelt Dam (Arizona)
- Basic needle valve design invented in 1908 by H.O Ensign used for regulating high pressure outlets
- Similar slide gate installed at Pathfinder Dam in 1909 (Wyoming)
- Further refinement of needle valve resulted in C.H Howell & Howard Bunger fixed cone valve, 1940.
- Slide gate 7-feet by 10-feet with 350' head of water in 1965 (Glen Canyon).

WHEEL GATE DESIGN

DESIGNED BY: USACE, CHICAGO DISTRICT

Mc Cook Reservoir Main Gate Chamber Layout

PLAN VIEW OF THE WHEEL GATES (MAIN TUNNEL)

Mc Cook Reservoir Wheel Gate

WHEEL GATE FRONT & SECTION VIEW

WHEEL GATE HOISTING SYSTEM

Project Design Data

- Wheel Gate Design Data:
 - Size is 16.5-feet wide by 30.5-feet high!!!
 - Design head is 400-feet (175-psi pressure)
 - Replacement life of the gate = 50 years with 25 years for wheel assemblies
 - Gate overall weight is 94-tons!!
 - Total of six wheel gates in the main tunnel gate chamber (One primary gate sandwiched by two secondary/tertiary gates)

WHEEL GATE DESIGN

HAND COMPUTATION / DESIGN

Design Procedure for Wheel Gate

Determine loadings & load combo (STEP-1)

- Determine loading & load combo:
 - Hydrostatic & hydrodynamic loads (see cylinder)
 - Cylinder size & internal diameter (3000-psi)
 - Breakaway Force
 - Normal Pull
 - Pull with down pull
 - Max push
 - Boundary conditions and gate support system
 - Determine the load transfer through 1st and 2nd stage concrete

Determine gate cross sectional properties (STEP-2)

- Determine initial gate cross section (based on loading)
- Check flexural stress, shear stress and deflection
- Do iteration till selected cross section is enough.

Determine gate wheel and shaft sizes (STEP-3)

• Determine allowable load on the wheel:

 $P_{all} = \left[\frac{24.5Bhn - 2200}{2.5(FS)}\right] \quad Applied Hydraulics Davis$

Determine required projected wheel area

- Determine net wheel tread width required
- Design wheel shaft
- Check wheel bearing
 - Radial Rating (RR)
 - Life span of wheel bearing L_{10} (for intermittent service)
- Check wheel contact pressure

Check bottom triangular gate portion (STEP-4)

- Compute C.G of the bottom triangular section
- Compute flexural stresses from applied loading

Determine the size of diaphragm/end plates (STEP-5)

- Determine the end & inner (diaphragm) plates
- Determine weld sizes

Design lifting bracket (STEP-6)

- Determine plate size/thickness
- Determine weld size

Design Gate Panel Connections (STEP-7)

- Check PIN failure
- Bearing failure of linking plate
- Shear tear-out

Design bumper guide (STEP-8)

- Determine the loading (kinetic energy)
- Compute the maximum (*axial Euler load*) P_{all}

Design of dogging device (STEP-9)

- Weight of the gate + Impact
- Determine the flexural moment (M_{max})
- Determine section modulus $S_{req} = ?$ (of dogging device)
- Determine deflection $\Delta = ?$

WHEEL GATE DESIGN

STAAD/PRO SOFTWARE BASED DESIGN

STAAD/Pro Design Procedure

- Build up 3-D model for the gate
- Determine the boundary condition (Support type)
- Apply the appropriate loads individually:
 - Dead load
 - Hydrostatic/Hydrodynamic load
 - Seal load
 - Buoyancy load
 - Down pull load
 - Wheel dead weight (analyzed separately)
- Apply the appropriate load combo
 - Three different load combo cases considered.
 - Select/pick the worst case scenario
- Analyze the STAAD/Pro output

STAAD/PRO MODEL RESULTS

Figure-1 3-D Model of Whole Gate

Figure-3 Stress contour (Hydrostatic load)

Figure-2 Stress contour (Self Weight)

STAAD/PRO MODEL RESULTS

Figure-5 Stress Contour (Down pull load)

Figure-7 Stress Contour (Machinery load)

Figure-6 Stress Contour (Wheel load)

Figure-8 Stress Contour (Bouyancy load)

STAAD/PRO MODEL RESULTS

Figure-9 Stress Contour (Load combo-1)

Figure-10 Stress Contour (Load combo-2)

Figure-11 Stress Contour (Load combo-3)

STAAD/PRO Model Result Discussion

- Stress & Deflec (LRFD)
 - Actual Stress:
 - $S_{max} = 22.9$ -ksi
 - $S_{min} = 0.083$ -ksi
 - Actual deflection:
 - Def. = 0.143"

- Stress & Deflec (LRFD)
 - Allowable Stress:
 - S_{allow} = 40.5 ksi (Miter Gate)
 - Allow deflection:
 - Def. = 0.4*(thickness of skin plate) = 0.51''

Further Design Work to do (Wheel Gate)

- Design the gate super structure to fit DDR gate chamber outline
- Detail the fixed & moving parts and connection to complete gate design
- Model simulation design for certain critical gate components

CONCLUSIONS

- Vertical lift gate should be designed as horizontally framed than vertical ones
- Design by hand and check with software based model simulation
- Consider fabrication issues early on the design phase
- Carefully select materials for various gate components

SLIDE GATE DESIGN

DESIGNED BY: INCA ENGINEERS, INC

Mc Cook Reservoir Distribution Chamber Layout

Mc Cook Reservoir Slide Gate

Design Methodology

- Hand calculation/computation
 - Equation from (EM 1110-2-2105)
- Software computation (ANSYS 7.0)
 - 3-D model simulation

Project Design Data

- Overall Slide Gate Design Data:
 - Gate leaf in 8-inches thick
 - Clear height = 5.00-feet
 - Clear span = 5.00-feet
 - Internal design pressure (Normal operation): 152-psi
 - Internal design pressure (Overload operation): 300-psi
 - Maximum external grouting pressure: 50-psi
 - Maximum time required to open/close gate: 30 min
 - Maximum gate velocity at closing (final 1-foot closure): 0.33fpm
 - Total gate stroke = 5.08-feet

DESIGN OF SLIDE GATE

- Project Design Data
- Gate Leaf Structure
- Gate Frames, Bonnet and Bonnet cover
- Hoisting Requirements

Gate Leaf Structure

Gate Frames, Bonnet and Bonnet cover

NOTE: Hoisting requirements are determined to estimate cylinder size and max. push requirements.

ANSYS Model Result (Slide Gate)

Figure-1 Slide Gate ANSYS mesh generation

Figure-3: Gate leaf deflection contour (ANSYS)

Figure-2: Gate leaf stress contour (ANSYS)

Figure-4: Gate slot cut-out close-up view (ANSYS)

DISCUSSION OF ANSYS MODEL RESULTS

- Stress Contour:
 - $-S_{max} = 13.486$ -ksi
 - $S_{min} = 16.395$ -ksi

- Allowable Stress :
 - S_{allowable} = 18-ksi (For 30ksi steel
 - $-F_{all} = 0.75*0.6*Fy*1.33$

- Deflection Contour:
 - $-S_{max}(-) = 0.079733$ $S_{max}(+) = 0.021756$
 - $S_{max} (+) = 0.021756$
- Allowable Deflection: - $S_{delta} = 1/750$ " (0.08")

QUESTIONS

Presenter contact information

- Lue Tekola, E.I.T (Presenter)
 - Mailing address:
 - U.S Army Corps of Engineers, Chicago District
 - 111 North Canal Street, Suite 600
 - Chicago, Illinois 60606
 - Work Phone#: (312) 846-5467
 - Cell Phone#: (847) 732-6268
 - Fax#: (312) 353-2156
 - E-mail: Luelseged.Tekola@lrc02.usace.army.mil
 - Alternate e-mail: <u>ltekola@excite.com</u>