Seismic Stress Analysis of Folsom Dam

Rick L. Poeppelman (USACE Sacramento District) Chung F. Wong (USACE Sacramento District) Enrique E. Matheu (USACE Engineer Research and Development Center) Michael Ma (USACE Sacramento District)

Presented by

Enrique E. Matheu, PhD

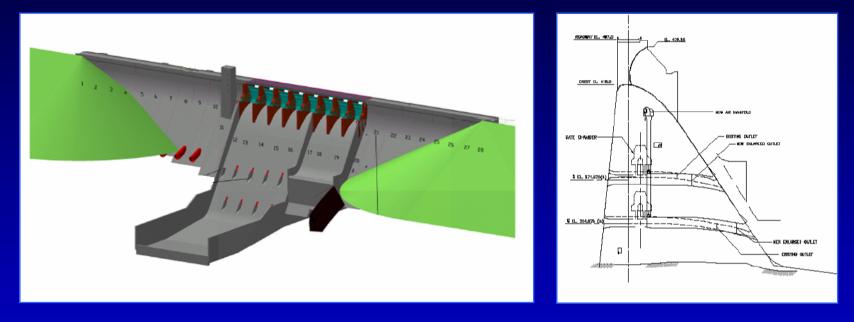
Geotechnical and Structures Laboratory Engineer Research and Development Center Vicksburg, MS

2005 Tri-Service Infrastructure Systems Conference and Exhibition St. Louis, MO – August 2-4, 2005

US Army Corps of Engineers

Introduction

Folsom Dam Description

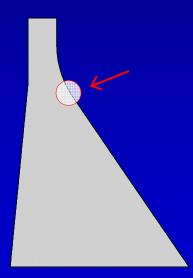

- Design/construction by USACE (1948-1956), transferred to USBR (1956)
- Maximum height of gravity section is 340 ft with a crest length of about 1,400 ft.
- 28 monoliths, 50 ft wide each.
- Main spillway: 5 ogee monoliths, two tiers of 4 outlets. Emergency spillway: 3 flip bucket monoliths.
- Embankment wrap fill and wing dams

US Army Corps of Engineers

Introduction

Outlet Works Modification Project

- Project will increase the river outlet release capacity from 26,000 cubic feet per second to 115,000 cubic feet per second.
- Spillway section modifications basically consist of enlarging the four existing upper tier river outlets (9.33 ft by 14 ft), constructing two new upper tier river outlets of the same size, and enlarging the four existing lower tier river outlets (9.33 ft by 12 ft).



US Army Corps of Engineers

Previous Stress Analyses

• DSAP Evaluation

- DSAP seismic evaluation completed in 1989.
- Peak ground acceleration (PGA) for the horizontal direction defined as 0.35g.
- Analyses performed using the computer program EAGD-84, considering the tallest non-overflow monolith as critical section.
- Different values of foundation modulus (5.8, 7.9, and 11.0 10⁶ psi) and wave reflection coefficient (0.75, 0.79, and 0.82) were considered.
- Maximum principal stresses reached about 870 psi on the downstream face, near the lower end of the circular

transition.

US Army Corps of Engineers

Previous Stress Analyses

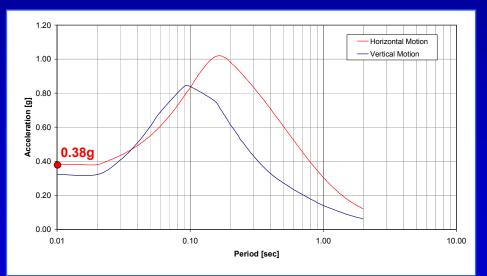
• DSAP Evaluation

Concrete Material Properties

Modulus of Elasticity Dynamic (10 ⁶ psi)	Poisson's Ratio	Unit Weight (pcf)
5.9	0.19	158

Foundation Rock Properties

Modulus of Elasticity Dynamic (10 ⁶ psi)	Poisson's Ratio	Unit Weight (pcf)
5.8	0.30	167
7.9	0.25	171
11.0	0.20	174

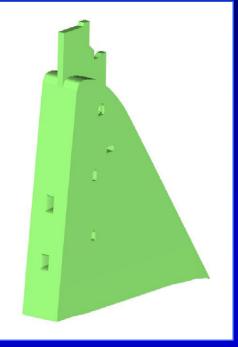


US Army Corps of Engineers

Ground Motions

Maximum Credible Earthquake

- Event of magnitude 6.5 at a source-to-site distance of 14 km, on the eastern branch of the Bear Mountains fault zone.
- Horizontal PGA values corresponding to the 50th and 84th percentile were determined as 0.24g and 0.38g, respectively.
- Vertical response spectrum defined using a perioddependent scaling factor.

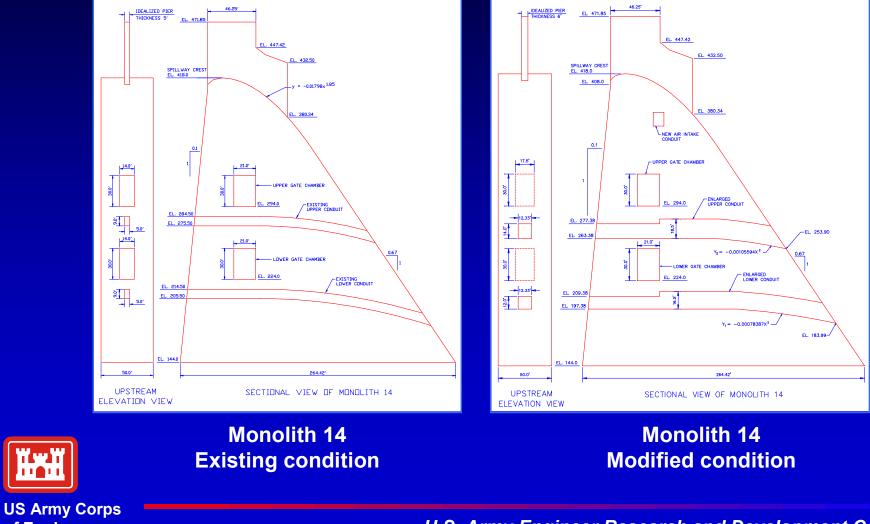


US Army Corps of Engineers

Approach

- 3D GTSTRUDL FE mesh of 50-ft wide dam monoliths.
- Chopra's simplified procedure used to develop sets of lateral forces .
- Horizontal and vertical components of input motion.
- Peak dynamic responses obtained by combination using SRSS rule.
- Dynamic responses combined with static results (monolith weight, hydrostatic pressures, and uplift).
- Results used for design of reinforced concrete liners.

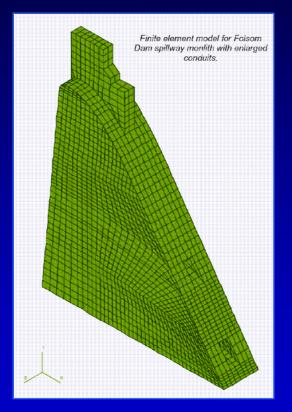
US Army Corps of Engineers


Chopra's Simplified Procedure

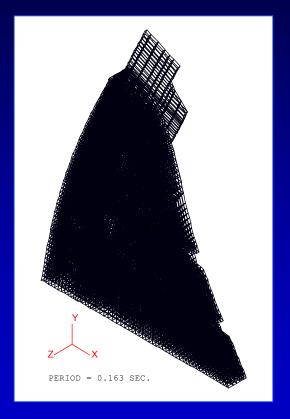
- Dynamic response can be described by the fundamental mode of vibration of the dam on rigid foundation rock.
- Mode shape does not take into account foundation flexibility.
- Analysis of fundamental-mode response still a complex problem because of frequency-dependent interaction phenomena (dam/reservoir, dam/foundation).
- By defining frequency-independent parameters, an equivalent SDOF system is used to approximate the dynamic response.
- FE analysis conducted using sets of lateral forces representing inertial and hydrodynamic actions associated with fundamental-mode including higher-mode correction.

US Army Corps of Engineers

• Evaluation of Different Conditions



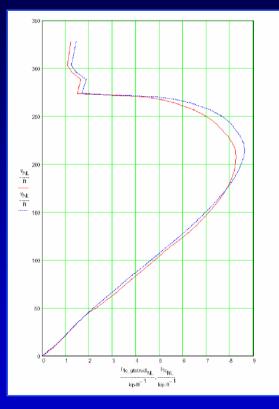
of Engineers


WW W

1101

Finite Element Model

3D model



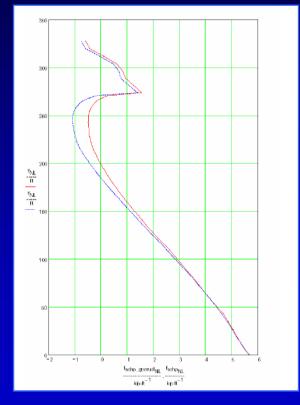
Fundamental mode shape $T_1 = 0.163 \text{ sec} (f_1 = 6.14 \text{ Hz})$

US Army Corps of Engineers

Equivalent Forces – Fundamental Mode

Inertia forces associated with fundamental mode response

Hydrodynamic forces associated with fundamental mode response



US Army Corps of Engineers

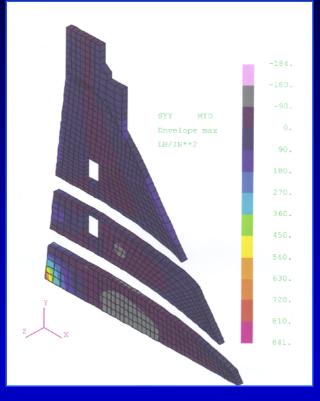
Equivalent Forces – Higher-Mode Correction

Inertia forces associated with higher-mode contributions

Hydrodynamic forces associated with higher-mode contributions

US Army Corps of Engineers

Cases Analyzed


	TABLE 4 SUMMARY OF CASES ANALYZED							
Case No.	Monolith	Condition	Modulus of Elasticity of Concrete E _s (psi)	Modulus of Elasticity of Foundation Rock E _f (psi)	Earthquake			
1	14	Existing	$3.6 \ge 10^{6}$	Rigid	-			
2	14	Modified	$3.6 \ge 10^6$	Rigid	-			
3	14	Existing	$5.9 \ge 10^{6}$	$7.9 \ge 10^{6}$	MCE			
4	14	Modified	$5.9 \ge 10^{6}$	$7.9 \ge 10^{6}$	MCE			
5	13	Existing	$3.6 \ge 10^{6}$	Rigid	-			
6	13	Modified	$3.6 \ge 10^{6}$	Rigid				
7	13	Existing	$5.9 \ge 10^{6}$	$7.9 \ge 10^{6}$	MCE			
8	13	Modified	5.9 x 10 ⁶	7.9 x 10 ⁶	MCE			

US Army Corps of Engineers

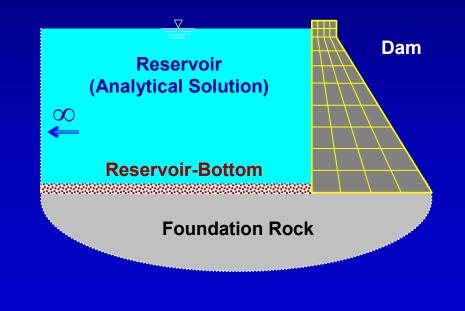
• Evaluation of Peak Stresses

- Results for Monolith 14 showed peak vertical tensile stresses mostly within the apparent dynamic tensile strength (700 psi)
- Stress concentration (1,140 psi) at the upstream heel but stress values drop sharply within 10 ft.
- The results for Monolith 21 also indicated stress concentration at the upstream heel (890 psi).

Envelope of maximum normal stresses Syy (psi) at z = 25 ft

US Army Corps of Engineers

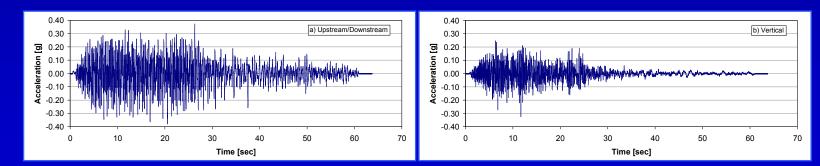
Approach


- Seismic stress analyses were conducted on 2D FE models of monoliths 14 and 21, subject to ground motion time histories representative of the MCE.
- Analyses performed with the computer program EAGD-84.
- Program developed at the University of California at Berkeley (Fenves and Chopra, 1984) to evaluate the seismic response of two-dimensional sections of concrete gravity dams taking into account
 - Dam-water interaction
 - Dam-foundation rock interaction
 - Energy absorption at the bottom of the reservoir

US Army Corps of Engineers

Program EAGD-84

- Equations of motion solved in the frequency domain assuming linear behavior for the dam-water-foundation system.
- The foundation region idealized as a homogeneous, isotropic, viscoelastic half-plane.
- Reservoir modeled as fluid domain of constant depth and infinite length along the upstream direction.
- Energy absorption associated with reservoir bottom materials quantified by wave reflection coefficient (α).

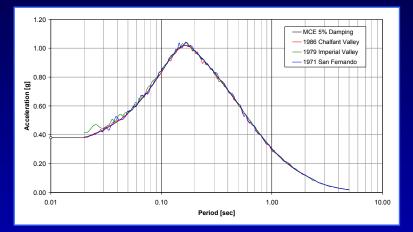


US Army Corps of Engineers

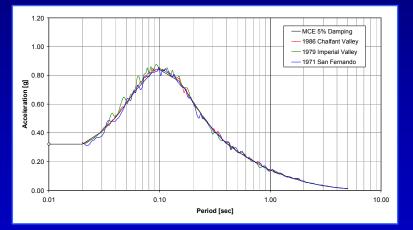
Ground Motion Time Histories

Maximum Credible Earthquake

Earthquake	Mw	Recorded ground motions			Modified time histories			
		Station	Dist. (km)	Comp.	PGA (g)	PGA (g)	PGV (cm/sec)	Direction
1971 San Fernando	6.6	Pasadena – Old Seism. Lab.	19	180	0.09	0.38	27.0	Cross Ch.
				270	0.20	0.38	34.8	Us/Ds
				Vertical	0.09	0.30	13.5	Vertical
	6.5	Cerro Prieto	26	147	0.17	0.38	23.8	Us/Ds
1979 Imperial Valley				237	0.16	0.38	23.1	Cross Ch.
				Vertical	0.21	0.33	11.5	Vertical
1986 Chalfant Valley	6.2	Bishop – Paradise Lodge	23	70	0.16	0.38	28.8	Cross Ch.
				160	0.16	0.38	29.4	Us/Ds
				Vertical	0.13	0.31	11.7	Vertical


Imperial Valley Earthquake

US Army Corps of Engineers


ï, w, ii

Ground Motion Time Histories

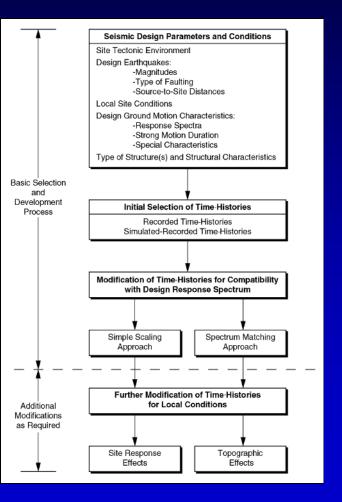
Spectral Matching

Comparison of 5%-damped horizontal response spectra for truncated (30 sec) time histories

Comparison of 5%-damped vertical response spectra for truncated (30 sec) time histories

US Army Corps of Engineers

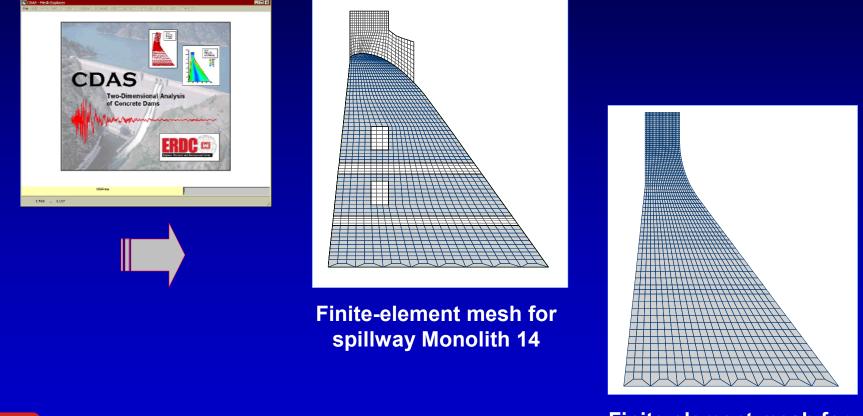
Ground Motion Time Histories


Response Spectrum Compatibility

— <u>Simple scaling approach</u>:

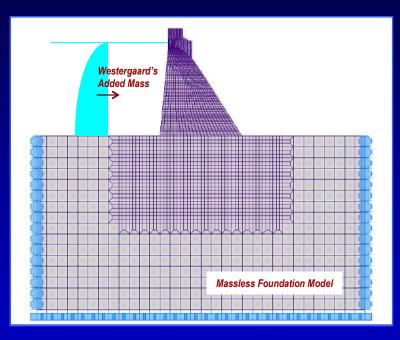
At least three time-histories for each component of motion should be considered.

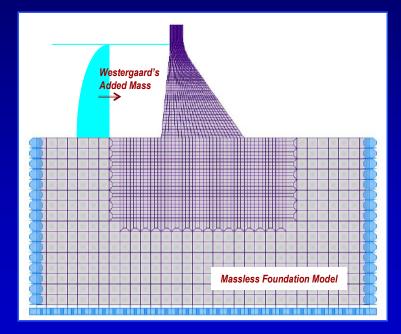
- Spectrum-matching approach:


Linear response is mainly determined by the spectral content of the timehistory. If a very close fit to the target spectrum can be obtained, a single time-history for each component may be sufficient.

US Army Corps of Engineers

• 2D FE Models (EAGD-84)




Finite-element mesh for non-overflow Monolith 21

US Army Corps of Engineers

• 2D FE Models (SAP2000)

Finite-element mesh for spillway Monolith 14

Finite-element mesh for non-overflow Monolith 21

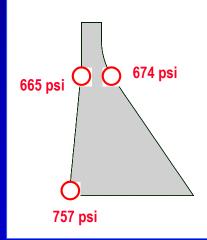
US Army Corps of Engineers

Comparison of Natural Periods (2D Models)

	EAG	D84	SAP2000		
MODE	PERIO	D [sec]	PERIOD [sec]		
	Rigid	Rigid Flexible		Flexible	
1 🤇	0.160	0.222	0.157	0.214	
2	0.071	0.139	0.070	0.107	
3	0.066	0.098	0.065	0.092	
4	0.044	0.054	0.043	0.052	
5	0.032	0.041	0.031	0.039	

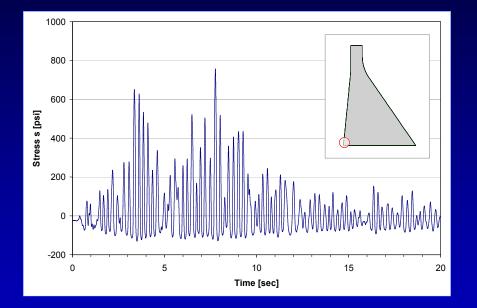
Monolith 14 (Empty reservoir)

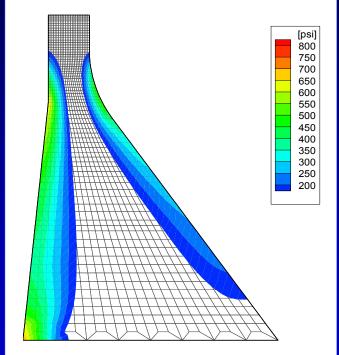
3D Model: T₁ = 0.163 sec


		EAGD84 PERIOD [sec]		SAP2000	
	MODE			PERIOD [sec]	
		Rigid	Flexible	Rigid	Flexible
Monolith 21	1	0.184	0.221	0.184	0.215
Monolith 21	2	0.083	0.101	0.083	0.106
(Empty reservoir)	3	0.059	0.088	0.059	0.088
>	4	0.044	0.056	0.044	0.058
	5	0.029	0.037	0.029	0.036

US Army Corps of Engineers

Peak Values of Maximum Principal Stress


Monolith 21 San Fernando Earthquake Reservoir pool elevation 466 ft

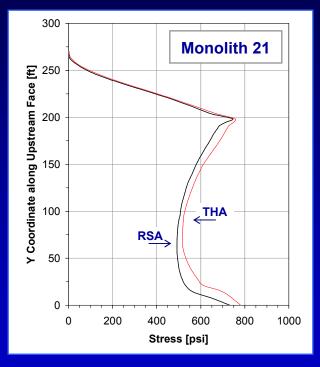

Case	Location	X	Y	Time	σ_{max}
Ouse		[ft]	[ft]	[sec]	[psi]
+H	Base (Heel)	4.85	8.75	7.8	603
+H	Upstream	20.53	196.31	3.4	581
+H	Downstream	61.87	196.31	7.9	604
-H	Base (Heel)	4.85	8.75	3.5	606
-H	Upstream	20.53	196.31	7.9	597
-H	Downstream	63.64	192.92	3.4	593
+H+V	Base (Heel)	4.85	8.75	8.5	571
+H+V	Upstream	20.53	196.31	3.4	613
+H+V	Downstream	61.87	196.31	5.4	598
+H-V	Base (Heel)	4.85	8.75	7.8	757
+H-V	Upstream	20.53	196.31	3.9	665
+H-V	Downstream	63.64	192.92	7.9	641
-H+V	Base (Heel)	4.85	8.75	3.5	717
-H+V	Upstream	20.53	196.31	7.9	623
-H+V	Downstream	61.87	196.31	3.9	674
-H-V	Base (Heel)	4.85	8.75	5.4	618
-H-V	Upstream	20.53	196.31	7.9	579
-H-V	Downstream	60.45	199.25	5.5	616

US Army Corps of Engineers

Stress Time Histories and Stress Contours

Maximum Principal Stress S₁

Normal Vertical Stress S_{yy} (S_{yy} > 200 psi)



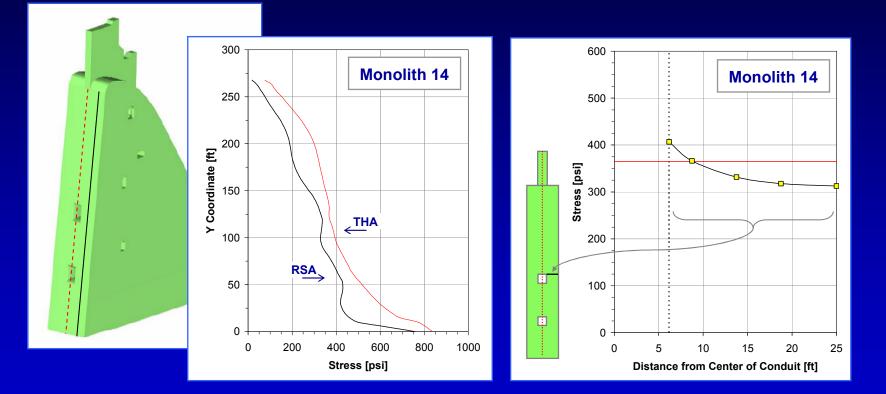
US Army Corps

of Engineers

Monolith 21 San Fernando Earthquake +H/-V Reservoir pool elevation 466 ft

Comparison with Response Spectrum Approach

 $RSA \rightarrow Maximum stress estimate$ obtained with the response spectrum approach considering horizontal and vertical input ground motion.


THA \rightarrow Peak value of dynamic stress time history considering both components of the Imperial Valley Earthquake (combination –H/-V).

Distribution of maximum values of dynamic normal vertical stress along upstream face

US Army Corps of Engineers

Comparison with Response Spectrum Approach

Distribution of maximum values of dynamic normal vertical stresses along upstream face

US Army Corps of Engineers

Summary

- Dynamic stress analyses of concrete gravity sections of Folsom Dam conducted using different approaches and considering horizontal and vertical ground motion components.
- Modified (expanded) version of Chopra's single-mode responsespectrum based procedure implemented for 3D FE analyses.
- 2D FE time history validation using EAGD-84, whose analytical formulation is consistent with the previous procedure (hydrodynamic effects, reservoir-bottom absorption, damfoundation interaction).
- Some regions with tensile excursions above the assumed strength threshold (700 psi) were identified in Monoliths 14 and 21 but they were confined to areas with significant stress gradients and limited to the region immediately near the heel.

US Army Corps of Engineers

Enrique E. Matheu, PhD Engineer Research and Development Center 3909 Halls Ferry Road, ATTN: CEERD-GS-E Vicksburg, MS 39180 Phone: 601-634-2692 enrique.e.matheu@erdc.usace.army.mil

US Army Corps of Engineers