

> 2005 Tri-Service Infrastructure Conference St. Louis, Mo. August 4, 2005

Design of Concrete Lined Tunnels in Rock

CUP McCook Reservoir – Distribution Tunnels Contract

David Force, SsE

Outline of Presentation

- General Project overview McCook Reservoir Project
- Overview of Distribution Tunnels Contract
- Design of Circular Tunnel Lining on Distribution Tunnels Contract
- Design of Concrete Bifurcations on Distribution Tunnels Contract
- Overview of Steel Liner Design on Distribution Tunnels Contract

McCook Reservoir Project

Metropolitan

Reclamation

Overall Goal – Control Flooding and Keep CSO Out of Lakes and Rivers !

McCook Reservoir

- Estimated cost \$520 million
- Provides flood control between Des Plaines River and Chicago Sanitary and Ship Canal
- Excavation of reservoir will be by Drill and Blast (Quarrying)
- Captures CSO's from Chicago and 37 suburbs
- **Provides > 10 billion gallons of storage**
- Scheduled Project Completion FY 2012

TARP / CUP SYSTEM

US Army Corps of Engineers Chicago District

ΪwΪ

Distribution Tunnels Contract

Distribution Tunnels Contract

- LS: Metropolitan Water Reclamation District of Chicago (MWRD)
- Designer: Montgomery Watson Harza
- Construction Contractor: Kenny Construction
- Gate Designer: INCA (sub to Kenny)
- Steel Liner Fabricator: *CBI (sub to Kenny)*

Purpose of Distribution Tunnels

 Convey and Distribute CSO's between the new Reservoir and the existing TARP Pump Stations and Tunnels

Distribution Chamber

Bonneted Slide Gates – 5'x 5'

CONTRACT COST/SCHEDULE

US Army Corps of Engineers **Chicago District**

Total contract Completed Anticipated Completion Date:

\$60 million 85% Jan 2006

Design of Circular Tunnel Lining

EM 1110-2-2901 30 May 1997

ENGINEERING AND DESIGN

Tunnels and Shafts in Rock

ENGINEER MANUAL

Tunnels General

- 3100 Lineal Feet of 11.5' DIA. Tunnel
 800 Lineal Feet of 8.5' DIA. Tunnel
- Approximately 310' below grade
- Excavation by Drill and Blast Creating a horseshoe shaped excavation

Tunnel Excavation – Drill and Blast

Tunnels General (con't)

- Final Tunnel cross sections are Circular except at bifurcations.
- At bifurcations cross sections are oblong or vary between circular and oblong

TUNNEL CROSS SECTION

SCALE: 14"= 1'-0"

Typical Tunnel Cross Section

Why Reinforced?

Most of the Chicago TARP tunnels are not reinforced because;

- Exfiltration is not a concern since external pressures from ground water exceed internal pressures

Why Reinforced? (con't)

On Distribution tunnels reinforcement is provided because;

- The proximity of the reservoir draws groundwater down allowing exfiltration

- Velocities > 100 fps can occur around gates and valves in tunnels – those areas are steel lined and backed with 6000 psi concrete
- Tunnel C and D are low velocity gravity 4000 psi concrete

Design Loads Circular Tunnel Liners

Internal Pressures

Max Hydraulic Dynamic Pressure of 160 psi

• External Pressure

Hydrostatic Load from Ground Water

head = 310 ft or 132 to 134 psi

Key Design Assumptions

- All rock loads are assumed to be fully supported by permanent rock dowels. No rock loads to the liner.
- Relaxation of the rock and stress redistribution is assumed to occur prior to installation of the lining

Crack Width Limitation (Internal Pressure Design)

Crack Width Limited to .008" for water tightness

• Tensile stresses in the reinforcing are limited to limit the crack width.

Materials

• Concrete strength:

4000 psi in tunnels6000 psi around steel liners10,000 psi at concrete bifurcation

• Reinforcing:

ASTM A615, GR 60

Analyses Procedure

Tunnel Lining is analyzed for Internal External pressure

External Pressure Design Procedure

1. Determine and apply external pressures: 132 psi for 11.5' diameter tunnels 2. Determine Load Case(s): 1.1 D + 1.4 H (EM 2901, Table 9-1) **3. Model tunnel Lining using STAAD** 4. Design Concrete for Hoop Compression

Tunnel Lining modeled with beam elements ——

11.5 ft I.D. Tunnel

۲x,

STAAD FE Model

Rock Modeled With truss elements —

Radial spring Stiffness assigned Per Equation 9-18, EM 2901.

11.5 ft I.D. Tunnel (Beam and Node Numbers)

STAAD Model

External Pressure Load 132 psi

STAAD Model

Results – External Pressure Design

Primary Load is hoop compression Pu = 164 K/FT for 11.5' Tunnels

• Moments and Shears are negligible

Internal Pressure Design Procedure

- 1. Determine and apply internal pressures: 160 psi11.5' diameter tunnels
- 2. Determine Load Case(s): 1.1 D + 1.4 H (EM 2901)
- **3. Model the tunnel using Program "TUNNEL" developed by MWH.**
- 4. Design Reinf. to Limit crack width to .008"

Model Features (Internal Pressure Design)

- 1. Surrounding Rock Mass was modeled as a thick walled cylinder
- 2. Deformation properties of the concrete lining and sound and fissured rock were modeled.
- **3. Strain compatibility was performed to determine** % of load carried by the rock and the lining.

Rock Properties (Internal Pressure Design)

- A 40" ring of fissured rock was modeled due to drill and blast excavations.
- Then, sound rock was modeled beyond the fissured zone

Fissured Rock (grouted)Erock = 480,000 psi

Sound RockErock = 1,300,000 psi

Results

(Internal Pressure Design)

• Primary Load was tensile stress in the Concrete.

Maximum Tensile Stress = 600 psi

- Reinforcement was sized to limit crack width to .008 inches
- Resulted in #6 @12 inches

Rock Dowels

Setting Forms

15 2004

Window in Forms for Concrete Placement

Tunnel Lining Formwork

Design of Concrete Bifurcations

Plan - Concrete Bifurcation

Plan of Concrete Bifurcation

Hydraulic Design Consideration

Concrete Bifurcation is subjected to moderate turbulence - 10,000 psi concrete

External Pressure Design

- Designed for external pressure of 136 psi
- External Pressures are resisted by the use of rock anchors on all sides
 necessary due to non-circular shape
- Concrete sections are designed per ACI 318.

Internal Pressure Design

- Designed for internal pressure of 160 psi
- SAP 2000 was used for the Analyses to include the effects of the surrounding rock mass. Similar to tunnel design.
- Concrete designed for watertightness and allowable crack width of .008 inches

Maximum Stresses – (Internal Pressure)

Overview of Steel Liner Design

Steel Liners Located at Distribution Chamber

Purpose of Steel Liners

 Provide erosion protection in areas around Distribution Chamber

- Velocities > 100 fps

• Form the bifurcation geometry

Design of Steel Liners

- Designed for internal and external pressures
- Circular Section designed per EM 2901 Section 9-5d.
- ASME Pressure Vessel Code, Section VIII used for design of noncircular sections
- Stiffeners are provided on obround liner sections to resist buckling
- In areas of geometric discontinuities, 3-D STAAD Model used to design the cross sections.

Steel Nosing being lowered into 26' dia. Access shaft

View From Inside Steel Liner

Steel Liner Being Welded – Oblong Section

Positioning Steel Nosing

Thank You

Machine-bored Tunnel (the new way)

Intersection of Machine-bored Tunnels

TUNNEL BORING MACHINE

27-ft Diameter Machine-bored Tunnel – Before Lining

Placing Concrete for Tunnel Lining

Л

LINED TUNNEL

