

Kentucky Lock Addition Downstream Middle Wall Monolith Design

Scott A. Wheeler, P.E. Huntington District

2005 Tri-Service Infrastructure Systems Conference

2-4 August 2005

Presentation Outline

Project Overview
Downstream Float-In Cofferdam
Monolith Design

Seismic Criteria
Stability Analysis
Thermal Considerations

Construction Issues

Project Overview

US Army Corps of Engineers

Huntington District

Kentucky Lock Location

Project Components

New 110'x1200' Lock Landward of Existing 110'x600' Lock

 Relocations of KY Hwy 62, P&L Railway, TVA Powerhouse Access, and TVA Transmission Towers

Project Schedule & Cost

 Construction began FY98
 Lock and DS Cofferdam Construction from FY08 through FY18 or beyond based on current funding stream

Total project costs are currently \$639M

US Army Corps of Engineers

Ĭĸï

Construction Contracts

Existing Project Site

Pool, Lock and Cofferdam Elevations

Pool Levels

Headwater:

Tailwater:

Minimum Normal	Elev. 354
Maximum	Elev. 375
Minimum	Elev. 300
Maximum Design	Elev. 344

Lock Elevations

Chamber:

Top of Wall Lock Sills

Upper

Lower

Elev. 382 Upper Elev. 335 Lower Elev. 285

Elev. Varies (Floating)

Approach Walls:

Cofferdams

- Upper Cofferdam:
- Lower Cofferdam:

Top of Protection Elev. 375 (Top of Spillway Gates) Top of Protection Elev. 343.5 (25 Year Frequency)

Elev. 345

One Corps, One Regiment, One Team

US Army Corps of Engineers Huntington District

Downstream Monoliths

US Army Corps of Engineers Huntington District **PDT Members**

TVA – Owner

- Nashville District Lock O&M and Project Management
- Bergmann Associates, et. al. Downstream Cofferdam Design
- Huntington District Design of DS Monoliths and Sills

 Many others involved in the overall design of the project

Downstream Cofferdam

 Design of the Downstream Cofferdam was contracted to a joint venture of Bergmann Associates and Ben C. Gerwick with D'Appolonia Engineering

Design completed in FY03

Combination of precast concrete float-in with tremie and cast-in-place in-fill, conventional sheet pile cellular, and tied Z-pile structures

One Corps, One Regiment, One Team W w W US Army Corps of Engineers **DS Cofferdam Plan** Huntington District 360 380 375.4 350 340 140 -340 a 343.6⁷ 130 320 +OOF ERSTING 69KY 300 SEE DAG SLANGOL 335 300 ÷. 0 325 320 HOOF 307.0 EX IST DEG TRANSH ISS DON TOWER RETACHING VALL, COMPLETED BY OTHERS . 22 ារពារមកភាពពារអាយ៉ាមអំពីអំពីអំពីអំពីអំពីអំពីអំពីអំពីអំពីអំ bB RENCH E C FUTURE LOCK STA 2-LOR FLOOD DNG +00 ILES (THP) II II . THEFT WE REPORT AND A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRI 1+00F DEA GUARD CELL 1 FLOOD DND FACILITY BRIDGE HEY FLOAT- IN COFFERDAM SECHENT ND. 2 NEW FLOAT-IN COFFERDAN SEGNENT NO. L ETISTING LOVER 1 HEN CLOSURE 48.54" DIA COFFERDAM CELL (TYP) FLOW PROFECTION WILL a Ē CEXISTING LOCK 800+6 13+00B 14+008 H E ÷ = STA STA

US Army Corps of Engineers Huntington District

Typical Cofferdam Section

Seismic Criteria Stability Analysis Thermal Considerations

Two sets of criteria for design

- TVA "Federal Guidelines for Earthquake Analyses and Design of Dams" and USCOLD
- USACE Earthquake Design and Evaluation for Civil Works Projects, ER 1110-2-1806

Seismic Criteria

TVA Criteria

- Probabilistic Approach for MCE 10,000 year event
- MDE = MCE
- OBE = $\frac{1}{2}$ MDE
- Only Reservoir Retaining Structures to be designed to the MDE

USACE Criteria

- Deterministic Approach for MCE
- MDE/OBE based on Hazard Potential Classification – High, Significant, or Low
- High Hazard MDE = MCE
- Significant & Low MDE < MCE</p>

US Army Corps of Engineers Huntington District

Seismic Criteria

Peak Horizontal Accelerations			
Agency	Hazard	MDE	OBE
TVA	Reservoir Ret.	0.25g	0.12g
USACE	High	0.25g	0.12g
	Significant	0.13g	0.05g
	Low	0.10g	0.05g

Seismic Criteria

Oownstream Monolith Hazard

- TVA Non-Reservoir Retaining Structure
 - Below Upstream Gates
 - Below Axis of Dam
- USACE Significant Hazard Classification
 - Little or no potential for direct loss of life
 - Loss of a major public facility

Seismic Criteria

◆ Load Cases to Consider
• OBE

• TVA - 0.12g
• USACE - 0.05g

• MDE

• TVA - N/A
• USACE - 0.13g

• Since MDE ≈ OBE, only OBE was analyzed

US Army Corps of Engineers Huntington District

Seismic Criteria
 Stability Analysis
 Thermal Considerations

Stability Analysis

8 Load Cases Analyzed
 3D Analysis on Miter Gate Monoliths
 2D Analysis on Remaining Monoliths
 Monolith and Cofferdam treated as one structure
 Miter Gate Monolith and Monolith Immediate

 Miter Gate Monolith and Monolith Immediately D/S analyzed as one Structure

Stability Analysis

Monolith/Cofferdam Combined Analysis

- Required for some load cases
- Tied together with #7 bars at 18" spacing vertically and horizontally
- Ties checked against seismic load case

One Corps, One Regiment, One Team

US Army Corps of Engineers Huntington District

Stability Analysis

Stability Analysis

Seismic Analysis of Ties

- 1st Attempt Non-Linear Time History Analysis using GTSTRUDL
- Ties Modeled as Non-Linear Springs
- Non-Linear Gap Elements at Concrete-Rock Interface
- 1st Runs Took 15+ Days and Produced Useless Results
- Next Attempt Exceeded the Computer's Addressable Memory Space

Huntington District

Stability Analysis

Stability Analysis

Seismic Analysis of Ties (Cont'd)

- Abandoned the Non-Linear Analysis
- Response Spectrum Analysis of Individual Structures (Cofferdam and Monolith)
- Modal Analysis using GTSTRUDL
- Assumed Worst Case of Peak Response of Each Structure Occurring at Same Time and Completely Out of Phase
- Results Gave a FS of About 3

US Army Corps of Engineers

Huntington District

Stability Analysis

Y

Stability Analysis

Dynamic Mode Shape Mode 1 Freq 3.986E+00

Stability Analysis

Miter Gate Monolith Design

- Does Not Meet Criteria for Some Load Cases When Analyzed Alone
- Determined What Additional Force Required at D/S Joint to Meet Criteria
- Designed a Shear Key to Carry this Force
- Monolith Joint To Also Be Grouted

US Army Corps of Engineers

Huntington District

Stability Analysis

Monolith Design

Seismic Criteria
Stability Analysis
Thermal Considerations

Thermal Considerations

Two Options to Deal with Thermal Loads

- Separate the Structures with Bond Breaker and/or Insulation and Model Just the Lock Concrete
- Model the Combined Structure Accounting for the Heat Transfer and Restraint Provided by the Cofferdam

Second Option Required Based on Stability

 Thermal Analysis Performed by Black & Veatch

Thermal Considerations

 Parametric Studies to Determine Lift Heights and Placement Restrictions

Thermal Cracking Analysis

- First Step Was to Model the Construction Sequence of the Cofferdam
 - 10' Tremie Placement
 - 5' Lifts Every 7 Days

Lock Construction Then Began on Day 365

Approximately 5' Lifts Every 5 Days

US Army Corps of Engineers Huntington District

Thermal Considerations

Thermal Considerations

Thermal Analysis Results

- Temperature and Shrinkage Steel Required
 - Around Culvert and Gallery
 - All Exposed Faces
 - Around the Chamfer at Top of Cofferdam

 Didn't Account for Longitudinal Restraint from Cofferdam

- Provide T&S Steel at This Face, or
- Create Joints in Cofferdam

US Army Corps of Engineers

Thermal Considerations

US Army Corps of Engineers Huntington District

Thermal Considerations

FROM EL 282.0 TO EL 315.0

US Army Corps of Engineers Huntington District One Corps, One Regiment, One Team

Construction Issues

Construction Issues

Primarily Related to Foundation

- Excavation Adjacent to Cofferdam Founding Elevation of Lock 2' to 17' Below Cofferdam Foundation
- Presence of Solution Channels One Known Channel That May Extend to Below Upstream Corner of First Monolith

Construction Issues

Construction Issues

US Army Corps of Engineers Huntington District KY Lock Addition – D/S Middle Wall Monolith Design

Questions?

Scott A. Wheeler, P.E. CELRH-EC-DS 502 8th St. Huntington, WV 25701 304-399-5929 Scott.A.Wheeler@usace.army.mil