WE BRING IT ALL TOGETHER

Chickamauga Lock and Dam Lock Addition Cofferdam Height Optimization Study

Leon A. Schieber, P.E. (KS) Project Engineer/Structural Engineer

ENERGY WATER INFORMATION GOVERNMENT

August 4, 2005

Cofferdam Height Optimization Study Agenda

- Background Lock Replacement Study
- Cofferdam Risk and Uncertainty (R&U)
 Approach EM1605 (hand method)
 vs. Monte Carlo Simulation
- R&U Inputs
- R&U Results

Background - Lock Replacement Study

Nashville District and Tennessee Valley Authority Performed Feasibility Study and Determined In-The-Dry Construction for Lock Replacement

Chickamauga Lock Replacement Background

- USACE Nashville
 District and the
 Tennessee Valley
 Authority Performed
 Lock Replacement
 Study
- Lock is to be Replaced Due to Existing Lock Stability Concerns
- Determined that in the Dry Construction is Most Desirable

Cofferdam Height

•TO WHAT HEIGHT SHOULD COFFERDAM BE CONSTRUCTED?

•WHAT METHOD SHOULD BE USED TO ANSWER THIS QUESTION?

Given Information Regarding Cofferdam Height Optimization

Top of Cofferdam (feet)	Equivalent Return Period (years)
655.2	10
658.5	25
661.8	100

Three different construction periods for lock addition were considered: 5, 7, & 10 years.

Cofferdam Risk and Uncertainty (R&U) Approach – EM 1110-2-1605 (hand method) vs. Monte Carlo Simulation

EM 1605 (Hand Method) is Limited in Prediction of Risk Costs, While Monte Carlo Simulation Allows for More Versatility in Prediction of Risk Costs

Cofferdam Height Optimization Equation Can be Simplified Into:

Risk Cost = RC = P * Flood Damage Costs + Construction Cost

 The Derivation or Determination of P is Where Monte Carlo Simulation Allows for Greater Advantage Over the EM 1605 (Hand Method)

Risk of Flooding is Defined as:

Where:

$$P = \frac{N! \cdot p^{i} \cdot (1-p)^{N-i}}{i! \cdot (N-i)!}$$

- ✓ N = Construction Period
- ✓ *i* = Number of Occurrences of Specific Flood Return Period
- P = Probability of Obtaining During Construction Period Exactly i Events of Specific Flood Return Interval Having a Probability of p Occurring in a Single Trial.
- Problem is There is no Reasonable "Hand Method" for Determining "i".

EM 1110-2-1605 – Simplification of P

- Solution Use Statistics to Simplify Equation
- Solve Opposite Question What is Probability No Floods Occur? i.e. i = 0 $P = (1 - p)^{N}$

Where:

- P = probability of obtaining during construction period no flood events having a probability of p
- Now 1 P = Probability of Obtaining at Least One Event of Probability p During Construction Period.
- The result does not define how many events (i.e. Could be More Than 1)

- Monte Carlo Simulation Allows for Prediction of "i".
- "i" is Predicted by Treating Annual Frequency Curve as Independent Predictor of Flood Events for Each Year of Construction Period
- This is Accomplished by Fitting a Probability Distribution to Annual Frequency Curve

Monte Carlo Simulation – Prediction of P

- Thus the Monte Carlo Simulation Model can Provide One or More Tailwater Elevations Above the Cofferdam Height During a Construction Period
- Cost Equations were Then Adjusted to Allow for Flooding Costs that Result From More Than One Event to be Added to the Total Risk Cost (Construction + Flooding Costs).
- RC = Sum (Flood Cost_i + Construction Cost)
- ✓ Where i = number of floods

R&U Inputs

Identification of Uncertainty and Assignment of Probability Distributions

Monte Carlo Simulation – Prediction of P

- The inputs include:
- ✓ cofferdam cell height (constant),
- construction duration (entered as discrete values),
- ✓ tailwater frequency curve (cumulative/beta general distributions),
- ✓ tailwater duration curve (constant per specific flood event),
- ✓ flooding costs (triangular distribution),
- ✓ construction costs (triangular distribution).
- The output includes:
- ✓ total risk cost (triangular distribution).

WE BRING IT ALL TOGETHER

08/04/05

Annual Tailwater Frequency Curve Data From 1958 to 1999

Percent Chance Exceedance	(Return Interval in Years)	(Elevation in feet) Expected Probability
0.2	(500 - year)	665.75
1	(100 - year)	661.79
2	(50 - year)	659.96
5	(20 - year)	657.35
10	(10 - year)	655.16
20	(5 - year)	652.63
50	(2- year)	648.09

Corrected Flood Probabilities For EM 1605 (Hand Method)

Percent Chance	(Return Interval in	(Elevation in feet)	one o eve	Probability of a one or more f events duri construction p		
Exceedance	Years)	Expected Probability	5 yrs	7 yrs	10 yrs	
0.2	(500 - year)	665.75	1.0%	1.4%	2.0%	
1	(100 - year)	661.79	4.9%	6.8%	9.6%	
2	(50 - year)	659.96	9.6%	13.2%	18.3%	
5	(20 - year)	657.35	22.6%	30.2%	40.1%	
10	(10 - year)	655.16	41.0%	52.2%	65.1%	
20	(5 - year)	652.63	67.2%	79.0%	89.3%	
50	(2- year)	648.09	96.9%	99.2%	99.9%	

Cofferdam Construction Cost – Probability Distribution

	Construction Cost	struction Co ontingencie		
T.O. COFFERDAM ELEVATION	BASE (w/o Contingency)	MIN %	AVG %	MAX%
655.2 (10 yr)	\$24,072,499	\$27,940,842	\$29,763,812	\$31,594,681
658.5 (25 yr)	\$25,835,790	\$29,953,783	\$31,890,153	\$33,835,602
661.8 (100 yr)	\$27,261,317	\$31,582,069	\$33,612,552	\$35,652,531

Cofferdam Construction Cost – Measurement of Uncertainty

Item		% of Contingency				
No.	Description	Min %	Avg %	Max %		
1	Mob/Prepatory	2	3	5		
2	Cofferdam Cells	15	20	25		
3	Ramp Cells	15	20	25		
4	Tie-Ins	30	45	60		
5	Flooding Facility	20	30	40		
6	Dewatering	30	35	40		
7	Instrumentation	20	35	50		
8	Miscellaneous	20	35	50		
9	Cofferdam Removal	15	23	30		

Cofferdam Construction Cost – Mitigation of Bias

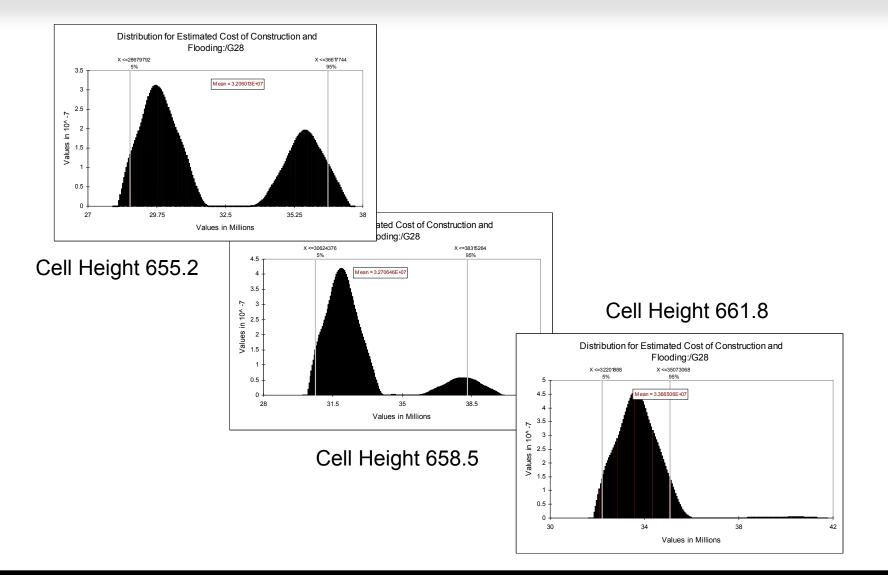
		% of	Conting		
ltem No.	Description	Min %	Avg %	Max %	Team Member
4	Tie-ins to Existing Facilities	2	3	4	G. Hicks
		20	25	30	L. Schieber
		30	40	50	J. Koontz
	Participated in discussion				M. Ledbetter
	Selected Values	30	45	60	

Cofferdam Flood Cost – Probability Distribution

	Total Fixed Flood Cost	Total Fixed Flood Costs w/ Contingencies				
T.O. COFFERDAM ELEVATION	BASE (w/o Contingency)	MIN %	AVG %	MAX%		
655.2 (10 yr)	\$4,533,977	\$5,353,413	\$5,794,580	\$6,235,746		
658.5 (25 yr)	\$4,682,352	\$5,677,143	\$6,141,266	\$6,605,389		
661.8 (100 yr)	\$4,865,427	\$5,729,313	\$6,195,062	\$6,660,811		

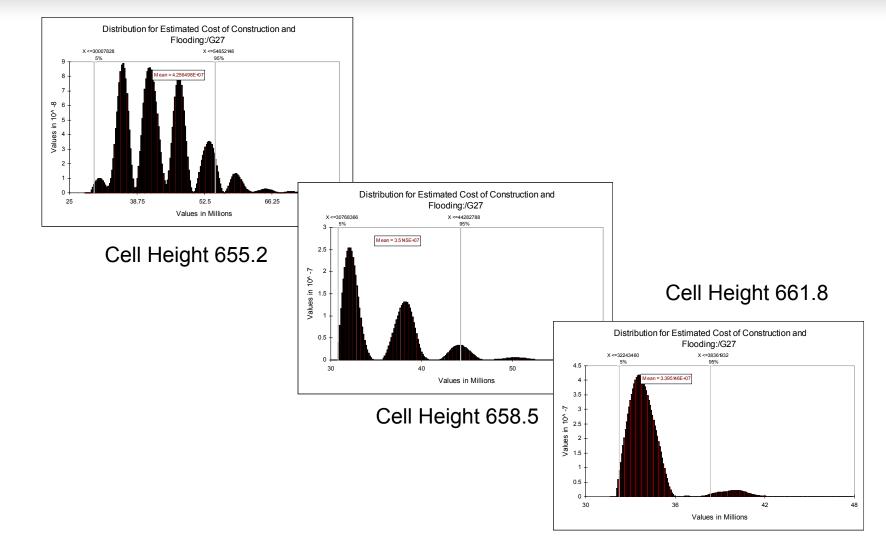
Cofferdam Flood Cost – Measurement of Uncertainty

		%	of Continger	ıcy
ltem No.	Description	Min %	Avg %	Max %
1	Pumping	10	15	20
2	Cleanup	20	35	50
3	Downtime	20	30	40
4	Damage	20	35	50


R&U Results

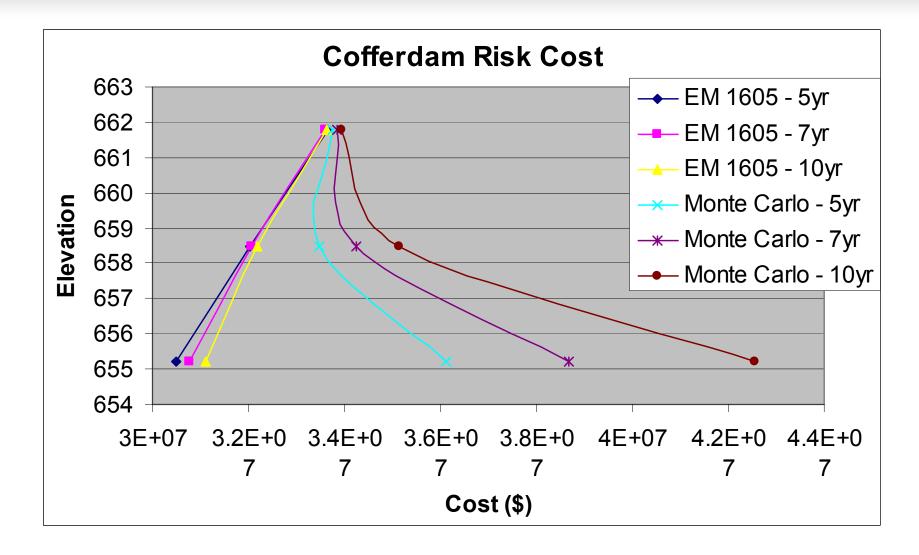
EM 1110-2-1605 Results Suggest The Optimum Cofferdam Height is the Lowest Elevation,

The Monte Carlo Simulation Results Suggest the Optimum Cofferdam Height is the Middle to Tallest Elevation Depending Upon Construction Duration


EM 1605 – Risk Cost Results

Page - 23

Monte Carlo Simulation – Risk Cost Results


Comparison of Risk Cost

	Cofferdam Height Optimization Results for EM 1605-10 Year Construction Period										
Top Elevation of Cofferda	Equiv alent Retur n Period	Total Flooding Cost, Mean	Inte Fl	% Confidence erval for Total ooding Cost Mean (\$)	Total Constructio n Cost,	90% Confidence Interval for Mean Total Construction Cost Mean (\$)		Total Risk Cost,	Interval f	nfidence or Mean of k Cost (\$)	
m (ft)	(yr)	(\$)	5%	95%	Mean (\$)	5%	95%	Mean (\$)	5%	95%	
655.2	10	1350796.74	0	4867541.5	29767114	28521360	31018496	31117243	28680974	34852772	
658.5	25	292081.072	0	2475259.75	31884883	30577972	33197282	32185256	30618184	34375240	
661.8	100	9451.18353	0	0	33608618	32234220	35005512	33625169	32227414	35026244	

	Cofferdam Height Optimization Results for Alternate Method-10 Year Construction Period										
Top Elevation of	Equiv alent Retur n	Total Flooding	Interv	6 Confidence val for Mean of Flooding Cost (\$)	Total Constructio	90% Confidence Interval for Mean of Total Construction Cost Mean (\$)		Total Risk	Interval fo	nfidence or Mean of k Cost (\$)	
Cofferda m (ft)	Period (yr)	Cost, Mean (\$)	5%	95%	n Cost, Mean (\$)	5%	95%	Cost, Mean (\$)	5%	95%	
655.2	10	12798011.6	0	23954028	29766965	28519440	31012780	42564976	30007828	54652148	
658.5	25	3246614.75	0	12351337	31898379	30560092	33215586	35144994	30768366	44282788	
661.8	100	336133.295	0	5867248.5	33615328	32221876	35006436	33951461	32243460	38361932	

Summary of Risk Cost

Questions?

Used Monte Carlo Simulation as a Tool to Predict Risk Cost and Provide Information Regarding Risk Management. Compared this with EM 1110-2-1605 (Hand Method).

Contact Information

Leon A. Schieber, P.E. Black & Veatch Special Projects Corp. Phone: 913-458-6546 E-mail: SchieberLA@BV.com