

Mark Gonski, PE - New Orleans District

Topics: Project, Overview

INNER HARBOR NAVIGATION CANAL (IHNC) LOCK REPLACEMENT

Mark Gonski, PE - New Orleans District **K** Topics: Project, Overview **David Lapene, PE - URS Corporation K** Topics: Team Overview, Design Criteria, Operational Design **Dale Miller, PE - INCA Engineers, Inc K** Topics: Float in Construction Sequence & Design Mark Gonski, PE - New Orleans District **K** Topics: Lessons Learned from Harvey Canal, IHNC CIP Study

USACE

lew Orleans

New Orleans District

Site Layout

Lake Ponchartrain

Claiborne Ave. Bridge -

Existing Lock

CIMM

Graving Site

New Lock Location

St. Claude Ave. Bridge

Mississippi River

Corps of Engineers New Orl<u>eans District</u>

Feasibility Report Submitted Mar 1997
 Construction Authorization
 Design Report Complete Nov 2005
 P&S Completion Jan 2007
 Lock Construction Start Oct 2007

USACE

New Orleans

Construction Status

Test Pile ContractGalvez St. WhariCompleted Aug 2003Completed Feb 2003

9 Mooring buoys Completed Apr 2003

T.E.R.C. Contract Completed Dec 2004

Actual construction began in January, 2001 – T.E.R.C. Contract

USACE New Orleans District

Model - Looking from river side

David Lapene, PE - URS Corporation

Topics: Team Overview, Design Criteria, Operational Design, Module Draft Study

INNER HARBOR NAVIGATION CANAL LOCK REPLACEMENT

USACE New Orleans District

URS A/E Team Major Firms Include:

URS Group, Inc., Brown, Cunningham, & Gannuch, Inc., Jacobs Civil, Inc., INCA Engineers, Inc., Ben C. Gerwick, Inc., The Glosten Associates, Inc., and Eustis Engineering Company, Inc.

How Did URS Select Team Firms?

What expertise does the project require?
 Depth and breadth in project management
 Staff with lock knowledge and experience
 Float-in and naval architecture expertise
 Intimate knowledge of local soil characteristics

Coordination Process

Progress and coordination schedule

Developed on MS Project and distributed

Team management teleconference every two weeks between PM's of all offices

Schedule / budget / technical quality / deliverables

URS / BCG project management face to face meeting every two weeks (or as required)
 Client relationships / contract obligation / budget / team directives

Coordination Process Continued

Design coordination teleconferences biweekly

Design methodology and philosophy / exchange of data / schedule / drawing standards / DCD / construction methodology

Progress and coordination drawing reviews

Approximately every three months

Quality Control and Quality Assurance (Every Submittal)

Independent Technical Review

- Qualitative review by each firm for design philosophy and methodology
- Documentation provided to USACE

Project-wide ITR

- Qualitative check of all disciplines and designs as a whole by senior personnel with USACE lock experience
- Documentation provided to USACE

TANTANTANTANTA

Corps of Engineers New Orleans District

Pile Driving

Corps of Engineers Vew Orleans District is demolished

Corps of Engineers New Orleans District

Project Completed

New St. Claude Bridge

Corps of Engineers New Orleans District

USACE New Orleans District

Water Stages

<u>Case</u>	Riverside	Lakeside	Head Difference
Normal Range (Transport & Construction)	EL. 0.0 to 3.0	EL 0.0 to 3.0	
Normal Operation	EL. 10.0	EL. 1.0	9'
Direct Head	EL. 18.0	EL. 0.0	18'
Governs			
Hurricane	EL. 0.0	EL. 13.0	13' (Reverse Head)
Governs Maintenance Dewatering	EL. 10.0	EL. 5.0	64' (Uplift Head)

Operational Monolith Design Criteria

- **EM 1110-2-2104 / ACI 318**
- No load transfer between monoliths
- Shell f'_c = 5000psi
 - 😹 Structural infill = 3000psi
 - 😹 Nonstructural infill = 2000psi
 - 💉 Fy = 60ksi
- Normal-weight concrete
- Overstress factors
 - \swarrow O/S = 1.167 \rightarrow construction / usual maintenance dewatering
 - ✓ O/S = 1.33 → max. direct head / unusual maintenance dewatering
- Service load displacements
 - ✓ Settlement ≤ 0.5"
 - ✓ Lateral displacement (usual cases) ≤ 0.5"
 - ✓ Lateral displacement (unusual cases) ≤ 1.5"

Infill Concrete in Base

- 24" bottom slab is not adequate to take beam shear from piles
- Considering half height structural infill concrete in cells
- Upper half to be nonstructural infill

Foundation Piles

48" & X 120' pipe piles selected

- 900k compressive capacity
- 😹 320k tensile capacity
- # 14' X 14' grid at walls / 14' X 20' grid at chamber floor
- ✓ Average compressive pile load → 75% capacity
- Approximate cost in place = \$47,000,000

Alternative pile study

Considered 36" X 120' pipe piles
 Approximately \$4,000,000 more than 48" piles

Module Draft Study

Evaluate Two Drafts for the Float-in Modules

Shallow Draft

- 😹 25' allowable draft
- Build to EL. (-) 19.75 in graving site and transport with attached cofferdam
- Karaving site invert EL. (-) 28.00

Deep Draft

- 😹 32' allowable draft
- Build to minimum EL. 6.00 no cofferdam needed at set down
- 😹 Graving site invert EL. (-) 38.00

Shallow Draft Chamber Module

Red denotes Float-in module built in graving site

- Allowable draft during transport 25' with 2' under keel clearance
- Attached cofferdam needed for set down

Shallow Draft Chamber Module

- Red denotes Float-in module built in graving site
- Allowable draft during transport 25' with 2' under keel clearance
- Attached cofferdam needed for set down

Deep Draft Chamber Module

Red denotes Float-in module built in graving site

- Allowable draft during transport 32' with 2' under keel clearance
- No cofferdam needed for set down

Deep Draft Chamber Module

Red denotes Float-in module built in graving site

- Allowable draft during transport 32' with 2' under keel clearance
- No cofferdam needed for set down

Draft Study Conclusions

Shallow Draft Configuration is Recommended

- Shallow draft is \$3.2m less expensive
- No dredging required at Florida Ave. bridge
- Less reinforcing due to less hogging and sagging
- Easier to construct and transport
- Less construction time required
- Depth of excavation at graving site more appropriate for soils

Dale Miller, PE - INCA Engineers, Inc

Topics:

Float in Construction Sequence & Design

Lock Construction

Graving Site
Transport
Set down
Foundation Integration
Monolith Completion
Monolith Joints

Gate Bay Section Isometric

Concrete Shells

12' to 14' deep cellular base for transport Gatebays: 28' X 28' cells with 24" top and bottom slabs Chambers: 19' X 42' cells with 24" top and **bottom slabs** 24" bottom slab is not adequate to take beam shear from piles Considering half height structural infill concrete in cells Upper half to be nonstructural infill

Graving Site

Longitudinal Section Thru Bulkhead Slots

Grade BeamsIntermediate Sand Bed

Lock Site

Pile Plan

USACE New Orleans District

Landing Pile Preparation

Compression Piles

Mesh to Prevent Excess Tremie Infill
 Compression Load to 3" x 11/2" x Continuous Shear Key

Tension Pile Connection

 Initially Retracted and Sealed
 Lowered and Grouted

Underbase Tremie Placement

EL -54.0

5% Negative Buoyancy on Landing Piles

Construction Sequence

USACE New Orleans District

Construction Sequence

Mark Gonski, PE - New Orleans District

Topics:

Lessons Learned from Harvey Canal, IHNC CIP Study

Lessons From Harvey Sector July 2005

Harvey Sector Gate Float-in Low Bid =

Insert plan of gate

Harvey Sector Gate CIP (rebid) Low Bid =

Insert plan of gate

Best Value Contracting Method

Best Value Lessons Learned

H.S.G. Summary of Lessons Learned

INDUSTRIAL CANAL LOCK REPLACEMENT

CIP FEASIBILITY STUDY U.S. ARMY ENGINEER DISTRICT NEW ORLEANS

Why is a cast-in-place option being explored?

a.) Harvey Sector Gate

- I. \$35 million CIP vs. \$42 million Float-In.
 - \$35 million cost could have been further reduced if time had permitted
- II. Contractors increase cost for risk and marine costs when bidding on a Float-In construction.
 - Braddock and Olmstead costs are also significantly higher than proposed.

b.) Based on Contractor responses to URS A/E Team questionnaire.

I. Sufficient room for CIP excavation provided cellular cofferdam is furnished on east side (need PM to further explore one-lane north by-pass as suggested by Users)

c.) Cost comparison to float-in.

I. Need unit costs from URS applicable to N.O. area at 95% submittal, of Phase I design

d.) Risk

I. With risks involved, bids may come in significantly higher than anticipated for float-in construction.

C. Foundation Design

I. Used 24" square PPC piles spaced at 8' (10' in chamber)

II. Gatebay

- A. 2D sections taken utilizing flexible base design w/ pile capacities provided by springs.
- B. Exterior walls designed as panels fixed on 3 sides and free at the top.
- C. Interior walls designed as counterforts. Designed for lateral load from opposing walls and dead and live loads from top slab.
- D. A 3D FE model will be developed in SAP2000 for P&S design.

I. Chamber

A. For feasibility level design, 2D analysis was performed using both CWFRAME and SAP2000.

Discuss Advantages & Disadvantages of Float-In

INNER HARBOR NAVIGATION CANAL (IHNC) LOCK REPLACEMENT

