CANTON DAM
SPILLWAY STABILITY

Is a Test Anchor Program Necessary?

US Army Corps
of Engineers

One Corps Serving The Army and the Nation
CANTON DAM
SPILLWAY STABILITY

- Background and History
- Determining Anchor Capacity
- Investigation and Test Anchor Program
- Summary
Background and History
CANTON LAKE
LOCATION

One Corps Serving The Army and the Nation
CANTON DAM

One Corps Serving The Army and the Nation
CANTON DAM

One Corps Serving The Army and the Nation
CANTON DAM
PROJECT DESCRIPTION

- Rolled Earthfill Embankment with a Length of 15,140 ft. and max. height of 73 ft.
- Gate Controlled Concrete Chute Spillway with 16 - 40 ft. wide by 25 ft. high Tainter Gates with a Total Capacity of 274,000 cfs.
- Outlet Works Consists of 3 - 7 ft. wide by 12 ft. high sluice gates.
- Downstream Channel Capacity is Approx. 1000 cfs.
CANTON DAM

PERTINANT DATA

- Top of Dam: 1648.0
- Top of Flood Control Pool and Top of Spillway Gates: 1638.0
- Top of Conservation Pool: 1615.4
- Pool Restriction: 1626.0
CANTON DAM
DAM SAFETY ISSUES

- HYDROLOGIC DEFICIENCY
- SEISMIC DEFICIENCY
- SEEPAGE DEFICIENCY
- SPILLWAY STABILITY
FOUNDATION MATERIALS

– PERMIAN RED BEDS
 • RUSH SPRINGS SANDSTONE
 • DOG CREEK SHALE
 – COMPACTION SHALE
 – POORLY INDURATED
 – GYPSUM LAYERS
 – SOFT LAYERS
 • BLAINE FORMATION
 – COMPACTION SHALE
 – 2 MASSIVE GYPSUM/ANHYDRITE LAYERS
DOG CREEK SHALE
STRENGTH CHARACTERISTICS

• OVERCONSOLIDATED
• DILATES WHEN SHEARED (AT LOWER CONFINING PRESSURE)
• LOWEST STRENGTHS 20-30 FEET, OR 1570-1580 ELEVATION, AND BELOW 50 FEET
• HIGHEST STRENGTHS BETWEEN 30 AND 40 FEET
DATA FROM ALL SHEAR TESTS

DEPTH, FT

SHEAR STRENGTH, TSF
TECHNICAL CONCERNS

• WEAK LAYERS IN FOUNDATION
 – GYPSUM SEAMS
 – OTHER SOFT SEAMS

• DESIGN SHEAR STRENGTH
 – USE OF COHESION

• DRAINAGE
 – 50 PERCENT EFFECTIVE
 – 0 PERCENT EFFECTIVE
Listing of Safety Factors

<table>
<thead>
<tr>
<th>Year</th>
<th>C</th>
<th>PHI</th>
<th>Uplift</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1944</td>
<td>880</td>
<td>31</td>
<td>2.38</td>
<td></td>
</tr>
<tr>
<td>1946</td>
<td>0</td>
<td>31</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>600</td>
<td>30</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>1200</td>
<td>50</td>
<td>2.16</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>0</td>
<td>39.3</td>
<td>100%</td>
<td>0.88</td>
</tr>
<tr>
<td>1983</td>
<td>0</td>
<td>39.3</td>
<td>50%</td>
<td>1.2</td>
</tr>
<tr>
<td>1997</td>
<td>0</td>
<td>33</td>
<td>100%</td>
<td>0.7</td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
<td>25</td>
<td>100%</td>
<td>0.55</td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
<td>25</td>
<td>50%</td>
<td>0.88</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>25</td>
<td>100%</td>
<td>0.50</td>
</tr>
</tbody>
</table>
CANTON DAM
SPILLWAY STABILITY

Spillway Cross Section
Showing Failure Plane
and Typical Post-Tensioned Anchor Layout
Determining Anchor Capacity
AN CHOR DES IGN LOAD FORMULA

\[P = \tau_w * L_b * \pi * d \]

- \(P \) = design load for the anchor
- \(\tau_w \) = working bond stress along the interface between rock and grout
- \(\tau_w = 50\% \text{ of the ultimate bond stress} \)
- \(L_b \) = bond zone length
- \(d \) = diameter of drill hole
RECOMMENDED BOND STRESS VALUES FROM PTI

<table>
<thead>
<tr>
<th>ROCK</th>
<th>AVERAGE ULTIMATE BOND STRESS-ROCK/GROUT (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite and Basalt</td>
<td>250 – 450</td>
</tr>
<tr>
<td>Dolomitic Limestone</td>
<td>200 – 300</td>
</tr>
<tr>
<td>Soft Limestone</td>
<td>150 – 200</td>
</tr>
<tr>
<td>Slates & Hard Shales</td>
<td>120 – 200</td>
</tr>
<tr>
<td>Soft Shales</td>
<td>30 – 120</td>
</tr>
<tr>
<td>Sandstones</td>
<td>120 – 250</td>
</tr>
<tr>
<td>Weathered Sandstones</td>
<td>100 – 120</td>
</tr>
<tr>
<td>Chalk</td>
<td>30 – 155</td>
</tr>
<tr>
<td>Weathered Marl</td>
<td>25 – 35</td>
</tr>
<tr>
<td>Concrete</td>
<td>200 – 400</td>
</tr>
</tbody>
</table>

Table 6.1, Recommendations for Prestressed Rock and Soil Anchors, PTI, 1996
TEST ANCHOR PROGRAM
PHASE I CORE STRENGTHS

Minimum = 120 psi
One Third = 330 psi
Median = 420 psi
Average = 456 psi
Maximum = 1,040 psi
TEST ANCHOR PROGRAM
PHASE II CORE STRENGTHS

Minimum = 50 psi Maximum = 860 psi
One Third = 300 psi Average = 460 psi
Median = 440 psi
TEST ANCHOR PROGRAM
PHASE I & II SUMMARY

- Ultimate Bond Stress = 10% of the Unconfined Compressive Strength of the Rock
- Minimum Value = 5 to 12 psi
- One Third Value = 30 to 33 psi
- Median Value = 42 to 44 psi
- Average Value = 46 psi
- Maximum Value = 86 to 104 psi
TEST ANCHOR PROGRAM
LAB BOND TESTS

<table>
<thead>
<tr>
<th>Boring</th>
<th>Maximum Bond Stress (psi)</th>
<th>Boring</th>
<th>Maximum Bond Stress (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL-1</td>
<td>102</td>
<td>BR-4</td>
<td>104</td>
</tr>
<tr>
<td>BL-1</td>
<td>57</td>
<td>BR-4</td>
<td>233</td>
</tr>
<tr>
<td>BL-2</td>
<td>81</td>
<td>BR-5</td>
<td>176</td>
</tr>
<tr>
<td>BL-2</td>
<td>84</td>
<td>BR-5</td>
<td>62</td>
</tr>
<tr>
<td>BL-2</td>
<td>141</td>
<td>BR-6</td>
<td>154</td>
</tr>
<tr>
<td>BL-3</td>
<td>98</td>
<td>BR-6</td>
<td>65</td>
</tr>
<tr>
<td>BL-3</td>
<td>76</td>
<td>BR-6</td>
<td>300</td>
</tr>
</tbody>
</table>

Minimum = 57 psi
One Third = 80 psi
Median = 100 psi
Maximum = 300 psi
Average = 109 psi
TEST ANCHOR PROGRAM

PHASE I PULLOUT TESTS

<table>
<thead>
<tr>
<th>Boring</th>
<th>Bond Zone Length (ft)</th>
<th>No. of Strands</th>
<th>Percent of Design Load (%)</th>
<th>Bond Stress (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1LA</td>
<td>15</td>
<td>7</td>
<td>118</td>
<td>63</td>
</tr>
<tr>
<td>A-1RA</td>
<td>15</td>
<td>7</td>
<td>165</td>
<td>97</td>
</tr>
<tr>
<td>A-3L</td>
<td>15</td>
<td>7</td>
<td>160</td>
<td>94</td>
</tr>
<tr>
<td>A-3R</td>
<td>15</td>
<td>7</td>
<td>155</td>
<td>91</td>
</tr>
<tr>
<td>A-2L</td>
<td>15</td>
<td>16</td>
<td>188</td>
<td>221</td>
</tr>
<tr>
<td>A-2R</td>
<td>15</td>
<td>16</td>
<td>190</td>
<td>224</td>
</tr>
<tr>
<td>A-5L</td>
<td>15</td>
<td>16</td>
<td>188</td>
<td>221</td>
</tr>
<tr>
<td>A-5R</td>
<td>15</td>
<td>16</td>
<td>190</td>
<td>224</td>
</tr>
<tr>
<td>A-4L</td>
<td>40</td>
<td>16</td>
<td>133</td>
<td>83</td>
</tr>
<tr>
<td>A-4R</td>
<td>40</td>
<td>16</td>
<td>133</td>
<td>83</td>
</tr>
</tbody>
</table>

No anchors failed during pullout tests
CANTON DAM
SPILLWAY STABILITY

- Investigation and Test Anchor Program
INVESTIGATION AND TEST PROGRAM

• Two phase test program required due to lack of funding
 • Phase I – abutment drilling
 – 6 core holes
 – 8 anchor pullout tests
 – 2 anchor creep tests
 • Phase II – spillway drilling
 – 4 core holes
 – 2 full scale anchor tests
• Awarded task orders for investigations and test anchors to MACTEC (Prime) and Hayward Baker (Sub)
TEST ANCHOR PROGRAM
PHASE I

- 3 core holes on each side of the spillway
 - 2 to 140 feet
 - 1 to 180 feet (top of gypsum)
- 2 test anchors on each side of spillway
 - 105 and 140 feet deep
 - 6 inch diameter hole
 - 7 strand tendon instrumentation
 - 15 foot bond zone
 - Perform pullout test to failure
 - Could not fail anchors
TEST ANCHOR PROGRAM
PHASE I - INVESTIGATION

One Corps Serving The Army and the Nation
TEST ANCHOR PROGRAM
PHASE I - INVESTIGATION

One Corps Serving The Army and the Nation
TEST ANCHOR PROGRAM
PHASE I - INVESTIGATION

One Corps Serving The Army and the Nation
TEST ANCHOR PROGRAM
PHASE I - INVESTIGATION

FINDINGS

• Original boring logs indicated caved material
• Caved material turned out to be the result of dissolution and collapse
• Noticeable increase in core recovery, RQD, and strength of core below 90 feet
• Rock dips slightly to the southwest
TEST ANCHOR PROGRAM
PHASE I

One Corps Serving The Army and the Nation
TEST ANCHOR PROGRAM
PHASE I

One Corps Serving The Army and the Nation
TEST ANCHOR PROGRAM
PHASE I

Load vs. Movement Graph

Minimum Theoretical Maximum Actual
TEST ANCHOR PROGRAM
PHASE I REVISED

• 2 test anchors on each side of spillway
 – 105 feet deep (one grouted and one not grouted)
 – 6 inch diameter hole
 – 16 strand tendon
 – 15 foot bond zone
 – Perform pullout test to failure

• 2 test anchor on each side of spillway
 – 105 feet deep
 – 6 inch diameter hole
 – 16 strand tendon with instrumentation
 – 40 foot bond zone
 – Conduct performance test and creep test
TEST ANCHOR PROGRAM
PHASE I REVISED
TEST ANCHOR PROGRAM
PHASE I REVISED

Load vs. Movement Graph

One Corps Serving The Army and the Nation
TEST ANCHOR PROGRAM
PHASE I REVISED

One Corps Serving The Army and the Nation
TEST ANCHOR PROGRAM
PHASE I REVISED

ANTON DAM TEST PROGRAM - TENSION MEASURING GAUGE

BOND ZONE - 40 FT

One Corps Serving The Army and the Nation
Canton Dam, A4 Left Load Test - Load Per Depth in Bond Zone

<table>
<thead>
<tr>
<th>Tensmeg Strain Gage ID and Depth from Top of Bond Zone</th>
<th>Load Interval % and kips</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-1 (0.06)</td>
<td>1.33750</td>
</tr>
<tr>
<td>TM-2 (3.6)</td>
<td>1.564</td>
</tr>
<tr>
<td>TM-3 (9.2)</td>
<td>0.5282</td>
</tr>
<tr>
<td>TM-4 (6.4)</td>
<td>0.1564</td>
</tr>
<tr>
<td>TM-5 (12.0)</td>
<td></td>
</tr>
<tr>
<td>TM-6 (14.8)</td>
<td></td>
</tr>
<tr>
<td>TM-7 (17.6)</td>
<td></td>
</tr>
<tr>
<td>TM-8 (20.4)</td>
<td></td>
</tr>
<tr>
<td>TM-9 (23.2)</td>
<td></td>
</tr>
<tr>
<td>TM-10 (26.0)</td>
<td></td>
</tr>
<tr>
<td>TM-11 (28.8)</td>
<td></td>
</tr>
<tr>
<td>TM-12 (31.6)</td>
<td></td>
</tr>
<tr>
<td>TM-13 (34.4)</td>
<td></td>
</tr>
<tr>
<td>TM-14 (37.2)</td>
<td></td>
</tr>
<tr>
<td>TM-15 (40.0)</td>
<td></td>
</tr>
</tbody>
</table>

One Corps Serving The Army and the Nation
TEST ANCHOR PROGRAM
PHASE I REVISED

Creep Movement Plot

One Corps Serving The Army and the Nation
TEST ANCHOR PROGRAM

PHASE II

• Core 4 investigation holes in spillway to an elevation of 1460
 – Collect and test samples for strength and consolidation
• 2 production anchors at gate 16 in existing spillway
 – One 32 strand anchor drilled at 18.4° to elevation 1470
 – One 28 strand anchor drilled at 30.0° to elevation 1470
 – 12 inch diameter hole
 – 40 foot bond zone
 – Conduct performance test and creep test
ANCHOR INSTALLATION
PHASE II
ANCHOR INSTALLATION
PHASE II

One Corps Serving The Army and the Nation
ANCHOR INSTALLATION
PHASE II
ANCHOR INSTALLATION
PHASE II FINDINGS

• Weir access is difficult
 – Slick surface
 – Tight workspace
 – Load limit on spillway bridge

• Continuous flow of cuttings is required
 – Falling cuttings blocked hole and drill tools

• Hole will cave in 12 to 24 hours
 – Duplex type casing would be ideal but none exists for this size of hole

• Control elongation of corrugated pipe

• Drill one hole and install corrugated pipe in that hole before starting another one

One Corps Serving The Army and the Nation
ANCHOR INSTALLATION

PHASE II FINDINGS

- Stage grout to avoid buckling corrugated pipe
- Measure top of grout accurately to avoid clogging of other grout tubes
- Consider single stage vs. two stage grouting
- Label grout and flush tube adequately
ANCHOR DESIGN
CANTON DAM
SPILLWAY STABILITY

• Summary
TEST ANCHOR PROGRAM SUMMARY

• Ultimate Bond Stress Values
 – From PTI Table = 30 to 120 psi
 – From Unconfined Compressive Strength Tests = 30 to 45 psi
 – From Lab Bond Tests = 80 to 110 psi
 – From Pullout Tests = 100 to 220 psi
 • No anchors failed during pullout test
 – Full scale anchor tests loaded to 133% of design load = 83 psi working bond stress
TEST ANCHOR PROGRAM SUMMARY

- Total force required for weir section = 1,550 kips
 - 12 anchors would be required for an ultimate bond stress of 30 psi
 - 2 anchors are required for an ultimate bond stress of 120 psi

- Total force required for pier section = 1,830 kips
 - 14 anchors would be required for an ultimate bond stress of 30 psi
 - 2 anchors are required for an ultimate bond stress of 120 psi
• Phase I
 – Cost approximately $700,000
 – Reduced the number of anchors from over 400 to 112
 – Cost savings of over $6,000,000

• Phase II
 – Cost approximately $800,000
 – Reduced the number of anchors from over 112 to 64
 – Cost savings of over $2,000,000

• Total cost of $1,500,000
• Total savings over $8,000,000
• Return on the investment of more than 5 to 1
SPILLWAY STABILITY
CANTON LAKE

Is a Test Anchor Program Necessary?

It certainly was for us

Some considerations if you are thinking about a test program
- Consider the total load required per monolith
- Consider the type of rock
- Consider the configuration of the structure
SPILLWAY STABILITY
CANTON LAKE

Tulsa District

Dam Safety Assurance Project
Is a Test Anchor Program Necessary?

US Army Corps of Engineers

One Corps Serving The Army and the Nation