Increased Bed Erosion Due to Ice

Dr. Decker B. Hains, P.E. United States Military Academy at West Point, West Point, N

John I. Remus, P.E. U.S. Army Engineer District, Omaha, Nebraska

Leonard J. Zabilansky, PE Cold Regions Research and Engineering Laboratory ERDC-Hanover

Bridge Street Bridge Late 60's

What Happened?

Ice Cover Effects on Narrow Rivers Initial Water Level

Ice Cover Effects on Narrow Rivers Rising Water Level

Ï

General Background

- Field Measurements
 - Scour probes using Time-Domain Reflectometryindependent of surface conditions
 - Stage must increase 2-4 times the ice thickness before break-up
 - Ice cover does not immediately respond to changes in stage
 - Increases above the freeze-up discharge but below the break-up threshold \rightarrow increases in mean velocity

TDR Scour Probes

Ice Cover Rt. 5 Bridge

Scour Under an Ice Cover Initial Stage of Breakup

Scour Under an Ice Cover Immediately Following Breakup

Scour Under an Ice Cover High Water Following Breakup

Fort Peck Reach of Missouri River

Five sites with periodic and continuous monitoring along the 170 mile reach

Culbertson, Montana October

January

Milltown Dam located 120 miles downstream of historic Butte and Anaconda copper mining operations.

Testing Parameters

- Clear Water Scour
- Cylindrical Pier
- Smooth & Rough Cover
- One type of Uniform Sediment (d₅₀ = 0.13 mm)
- Two Pressure Conditions
 - 3" of head
 - -6" of head

Effect of Flow Intensity: V/V_c

 Clear-water Scour- <u>no</u> sediment transport on the bed

 $V_c > V \ge 0.5 V_c$

 Live-bed Scour- sediment transport on the bed

 $V \ge V_c$

• For the sediment in this study, $V_c = 0.9$ fps

Test Conditions

Number of Tests	Cover Condition	Relative Cover Roughness	
6	Open Water/Free Surface	N/A	
5	Floating	Smooth	
1	Floating	Rough	
6	Fixed	Smooth	
2	Fixed	Rough	

Rough Cover

Smooth Cover

of Engineers

of Engineers

Sample Scour Hole- Test C5

Sample Scour Hole- Test XR2

Conclusions

Ice Effects on Bed Erosion

 Ice cover can be a major factor in sediment transport and stability of contaminated sediment.

- Pressurized flow due to ice significantly increases mean velocity and the scour potential.
- Ice cover roughness increases turbulence, distorts the vertical velocity profile and increases bed shear.
- Existing theory and models do not adequately explain these field observations and flume experiments.

Leonard Zabilansky Cold Regions Research and Engineering

Laboratory ERDC-Hanover 72 Lyme Rd Hanover, NH 03755 (603) 646-4319 Ijzab@crrel.usace.army.mil

Summary Results Grouped by V_{avg}

Test	Avg V [fps]	Ya [in]	Duration [h:mm]	Scour Depth [in]	Scour Depth [cm]	Notes		
$0.650 \text{ fps; } V_{avg} / V_c = 0.7222$								
A5	0.650	9	16:12	2.6875	6.826			
В3	0.650	9	18:10	2.7500	6.985			
0.700 fps; $V_{avg}/V_c = 0.7777$								
A6	0.700	8.5	13:13	2.8750	7.303			
В5	0.700	8.5	15:29	3.2500	8.255			
0.735 fps; $V_{avg}/V_c = 0.8167$								
A3	0.735	10	9:05	2.6875	6.826			
B1	0.735	10	19:49	3.2500	8.255			
C1	0.735	3	18:35	3.1250	7.938			
C4	0.735	6	18:55	3.1250	7.938			

Summary Results Grouped by V_{avg}

Test	Avg V [fps]	Ya [in]	Duration [h:mm]	Scour Depth [in]	Scour Depth [cm]	Notes		
$0.773 \text{ fps; } V_{avg}/V_{c} = 0.8589$								
A2	0.773	8	17:57	3.1875	8.096			
B2	0.773	8	22:08	3.2500	8.255			
R1	0.773	8	18:13	3.0000	7.620	Live Bed Scour		
C5	0.773	3	15:39	3.2500	8.255			
C6	0.773	6	15:39	3.1875	8.096			
XR1	0.773	3	17:17	2.8750	7.303	Live Bed Scour		
XR2	0.773	6	16:06	3.3125	8.414	Live Bed Scour		
$0.835 \text{ fps; } V_{avg}^{}/V_{c}^{} = 0.9278$								
A4	0.836	9	14:27	3.3125	8.414			
B4	0.836	9	17:46	3.3750	8.573			
C2	0.836	3	16:22	3.2500	8.255	Live Bed Scour		
C3	0.836	6	20:16	2.8750	7.303	Live Bed Scour		

Velocity Profile Comparisons- Summary

- Open water- logarithmic as expected
- Covered flows-
 - Zero velocity at boundaries (no slip condition)
 - Maximum velocity location is a function of-
 - Flow depth
 - Roughness of boundaries
 - Viscosity of fluid
 - Maximum velocity located near the middle for floating smooth cover
 - \rightarrow similar boundary roughness
 - Larger maximum velocity for rough cover \rightarrow live-bed

Pressurized flows- velocity shifts toward smoother boundary

- Less scour for pressurized smooth cover \rightarrow shifts toward cover
- More scour for pressurized rough cover \rightarrow shifts toward bed
- Shifts more pronounced for larger V_{avg}/V_{c} and larger pressure head
- Pressurized flows- V_{avg} not acceptable indicator for live-bed scour

Combined effect of roughness and pressure flow

