

Tri-Service Infrastructure Conference Water Quality Management

San Francisco Bay Mercury TMDL – Implications for Constructed Wetlands

Dr. Herbert Fredrickson, Dr. Elly Best and Dr . Dave Soballe

U.S. Army Engineer R&D Center, Environmental Laboratory, Waterways Experiment Station, Environmental Laboratory, Vicksburg, MS 39180-6199

Definition

- 1972 Federal Clean Water Act [§ 303(d)] essentially requires USEPA to manage the nation's water quality on a watershed basis.
- Calculation of the maximum amount of a specific pollutant that a water body can receive and still meet Water Quality Standards
- Allocation of that (maximum) amount to the various pollutant's sources

$$\mathsf{TMDL} = \Sigma \mathsf{WLA} + \Sigma \mathsf{LA} + \Sigma \mathsf{MOS}$$

Process

- 1. Identify impaired water "303(d) List".
- 2. Determine maximum quantity of a pollutant that a water body can assimilate without exceeding a Water Quality Standard.
- 3. Quantify current sources of pollutant.
- 4. Determine necessary load reductions.
- 5. Allocate maximum pollutant loads to each source.

Mercury – an Environmental Pollutant

Human Exposure

http:www.nih.gov/od/prs/ds/nomercury/health.htm

- Neural impairment chidren most susceptible
- Level of Concern in Blood = 5.8 THg µg per L
- 6% of U.S.A. childbearing-aged women, blood levels at/above 5.8 (1999-2002)
- Hair Hg levels 20% of U.S.A. childbearing-aged women greater than Federal health standards (UNC Asheville)
- 60,000 U.S.A. births per year Hg impaired (NAS, July 2001)
- Methylmercury (MeHg) is bioavailable form

Mercury – an Environmental Pollutant

Human Exposure Route - Mainly through eating fish

Fish Consumption Frequency	Average Hg Hair Concentration
	(μg/g of hair)
None	2.0
Less than 1 fish meal/month	1.4 (range 0.1 to 6.2)
Fish meals twice/month	1.9 (range 0.2 to 9.2
One fish meal/week	2.5 (range0.2 to 16.2)
One fish meal/day	11.6 (range 3.6 to 24.0)

World Health Organization Programme for Chemical Safety Cited in EPA's Mercury Study Report to Congress December 1977

Mercury – an Environmental Pollutant

Environmental Effects

- MeHg accounts for 75% of USA fish advisories
- 2073 MeHg fish advisories in 41 states

San Francisco Bay Mercury TMDL – Implications for Constructed Wetlands

SF Bay Mercury Total Maximum Daily Load (TMDL)

GOALS:

- 1. Reduce total mercury loads into the bay.
- 2. Reduce methylmercury production.
- 3. Monitor and focus studies on understanding Bay system.
- 4. Encourage actions that address multiple contaminants.

California Regional Water Quality Control Board http://www.swrcb.ca.gov/rwqcb2/sfbaymercurytmdl.htm

303(d) Impairment – Sports fishery, Endangered species, Habitat

SF Bay Fish Tissue THg Concentration Compared to US EPA Criterion

SF Bay Bird Egg THg Concentration Compared to No Effect Level

One Box Mercury Mass Balance Model

California Regional Water Quality Control Board http://www.swrcb.ca.gov/rwqcb2/sfbaymercurytmdl.htm

Levels of Particulate Total Mercury in the Water Column

Measured THg Levels

Predicted aqueous THg Levels by reducing sediments by 50%

California Regional Water Quality Control Board

http://www.swrcb.ca.gov/rwqcb2/sfbaymercurytmdl.htm

Mining Legacy vs Contemporary Atmospheric Loading

Current Mercury Loads /**Proposed Allocations**

SOURCE	<u>Existing</u> <u>kg/yr</u>	<u>Allocation</u> <u>kg/yr</u>	Per Cent Reduction
Sediments	460	220	53%
Upstream Sources (Central Valley)	440	330	25%
Urban Runoff	160	82	49%
Rural Runoff	25	25	0%
Historic Mercury Mine Drainage (Guadalupe River)	92	2	98%
Atmosphere	27	27	0%
Wastewater	16	16	0%
TOTAL	1,220	702	42%

http://www.swrcb.ca.gov/rwqcb2/sfbaymercurytmdl.htm

SF Bay Catchment - ~40% area of CA; 47% of CA runoff

Comparison of Rates of Atmospheric Mercury Deposition

Newly deposited Hg more bioavailable than that in sediment (Benoit et al, 2003)

Mercury TMDL Compliance Issue #1

- Atmospheric deposition of mercury is an important source.
- States lack interstate regulatory jurisdiction

Mercury TMDL Compliance Issue #2

- Linkages between <u>particulate</u> THg and MeHg and fish body burdens are not clear.
- Net MeHg production is site specific
- MeHg uptake and biomagnification is foodweb specific.

San Francisco Bay Mercury TMDL – Implications for Constructed Wetlands

San Francisco Bay Wetland Reconstruction

"... the restored wetland be designed and operated to minimize methylmercury production and biological uptake, and result in no net increase in mercury or methylmercury loads to the Bay."

California Regional Water Quality Control Board Basin Plan Amendment – Resolution R2-2004-008

San Francisco Bay Wetlands- Ecological Importance

- Loss >90% of marsh wetlands since 1900
- West coast flyway
- Critical habitat for endangered species

URL: http://sfbay.wr.usgs.gov/access/IntegratedScience/IntSci.html

San Francisco Bay Area Wetlands Ecosystem Goals Project

• HAAF represents only 203 hectares (0.8 %) of

26,300 hectares to be restored by 2055

- Many restoration sites will require fill material
- Intertidal wetlands are potential source of

MeHg

Port of Oakland - Commercial Importance

Most important on west coast (\$30 B pa)

Deep Ocean Disposal Site

Potential Win – Win

- 1. Reduce DM disposal costs.
- 2. Avoid material & transport cost.

China Camp State Park – Reference Site

Spartina foliosa

Salicornia virginica

THg and MeHg in surface (0-4 cm) sediments from various wetlands

- ✤ Only a loose relationship between THg and MeHg levels (log log plot).
- ✤ Despite history of mining level of THg and MeHg are median among contaminated sites.
- ✤ However, potential for a 10X increase/decrease in MeHg levels.

Mercury magnification in aquatic food webs Biogeochemistry – Microbial Ecology

Question:

How do ppb levels of Hg in soil, water and sediment become ppm levels in top aquatic predators? (Benoit et al., 2003)

Gray et al., 2004 EST

Clues:

MeHg generally comprises <1% of the THg in soils and sediments, but comprises 99% of the total Hg in fish biomass.

Sulfate-reducing bacteria methylate mercury.

Methylmercury is the species of highest concern

Food Web Biomass MeHg SRB 1 - *Eh* +Ehbioavailable

- Bacteria in sediment catalyze antagonistic methylation and demethylation reactions.
- These reactions are very rapid.
- The availability of mercury to methylating bacteria limits MeHg production.
- Extent of biomagnification is foodweb specific.

Wet Season vs Dry Season

San Rafael Average Temperature and Rainfall

✤ Relative MeHg levels (% THg) are 3X greater on average in the wet season.

Site	THg	MeHg	Meth.rate	Dem.rate	M/D
Jul-04	(ng/gDW)	(ng/g DW)	(ng/gDW/d))	(ng/gDW/d)	
Petaluma River Mud	397 (2)	1.33 (0.32)	7.74 (2.21)	1.26 (0.39)	6.19 (0.99)
Sonoma Fringe Marsh Mud	358 (10)	0.49 (0.07)	2.80 (0.28)	0.42 (0.14)	7.36 (3.34)
Sonoma Baylands Mud	296 (10)	2.75 (0.16)	13.21 (3.18)	2.64 (0.14)	5.03 (1.33)
HAAF Fringe Marsh Mud	299 (117)	1.97 (0.89)	6.59 (4.87)	1.60 (0.91)	4.18 (1.44)
China Camp Mud	362 (35)	3.71 (0.59)	9.43 (0.19)	3.27 (0.71)	3.00 (0.81)

High Primary Production – Hallmark of Intertidal Wetlands

MeHg Biomagnification at the Base of the Foodweb

Nassarius obsoletus

Mercury Bioaccumulation Factors (BAF)

You are what you eat

<u> </u>				2340	4			8	¹⁵ N (%	5		
Species	Marsh Habitat	$\delta^{13}C \pm SD$	δ^{15} N <u>+</u> SD	$\delta^{34}S \pm SD$	-		<u>ب</u> ـ		ក ស	~) ~	16	18
Primary producers Macrophytes					Trichocorixa reticulata Melampus olivaceus Mytilus edulis	 □			N _lt	4		× 0 🗆
Spartina foliosa	Low marsh	-15.1 <u>+</u> 0.2	10.3 <u>+</u> 0.3	11.5 <u>+</u> 0.5	Ligia occidentalis Tagelus californiansis						ł	vertet shes
Salicornia virginica	High marsh	-26.7 <u>+</u> 0.2	11.0 <u>+</u> 1.2	12.3 <u>+</u> 2.2	Orchestia traskiana Upogebia pugettensis							Invertebrates Fishes Airde
Microalgae <i>Microcystis</i> sp. Macroalgae	Marsh pool	-17.7	5.1	9.5	Porzana carolina Protothaca starninea Aplysla californica Cerithidia californica Pachygrapsus crassipies		н			i 1		I
Rhizoclonium sp.	Mid marsh	-20.2	9.6	17.5	Callianassa califomiensis Hemigrapsus oregonensis Small Fundulus parvipinnis							
Consumers Birds					Paralichthys californicus Hypsopsetta guttulata Small Atherinops affinis Bulla gouldiana	,				0 0 0		
L-F Clapper rail Fish	Low marsh	-18.4 ± 0.2	17.9 <u>+</u> 0.1	14.6 <u>+</u> 1.2	Cievelandia los Mugil cephalus Leptocottus armatus Medium Atherinops affinis						φŢο ^φ	4
Arrow goby	Channel	-18.4 ± 0.2	17.9 <u>+</u> 0.1	14.6 ± 1.2	Large Atherinops affinis							.
Striped mullet	Channel	-16.1 ± 0.2	16.0 ± 0.2	7.4 ± 0.2	Large Fundulus parvipinnis Rallus longirostrus levipes							O IXI
Invertebrates		—	—	—	'	_ر 2		-3		4	4	
Mytilus edulis	Channel	-18.0	10.0	13.7					Trophi	c level		
Orchestia traskiana	Mid marsh	-21.5	11.5	14.1								

Dr. Joy Zedler's Study (1997) of Tijuana Estuary

Fish are trophically linked to Spartina derived carbon in the low marsh

MeHg/THg vs d13C

SUMMARY

HAAF Mercury Mass Balance

- Marshes may become net Hg exporters as they mature
- Linkage between particulate THg and fish/egg burdens tenuous
- Antagonistic microbial methlyation/ demethylation rates are both fast (net MeHg)
- Large temporal and spatial variability
 Macro drivers of net methylation
 - Wet season
- Marsh position in salinity gradient Uncertainty due to lack of knowledge
 - Availability for methylation
- Trophic structure and biomagnification Adaptive management is essential

San Francisco Bay Mercury TMDL – Implications for Constructed Wetlands

Questions?

fredrih@wes.army.mil