Protecting the NJ Coast Using Large Stone Seawalls

Cameron Chasten Philadelphia District

Overview

- Project Description
- Design Overview
- Seawall Construction
- Deepwater Stabilization Construction
- Lessons Learned

Project Locations

Project Information

- Townsends Inlet
- Hereford Inlet
- Residential / commercial buildings
- Existing undersized seawalls
 - Damage
 - Failed sections

Pre-Conditions - Avalon

Pre-Conditions - Hereford

Pre-Conditions - Hereford

Pre-Condition - Hereford

Pre-Condition - Hereford

Design Basis Seawall

- Based on set of historical storms
- Design forcing parameters based on Modeling
 - -wave
 - water level
 - currents at each inlet
 - 50-yr return period equivalent

Design Criteria - Seawall

- SPM and CEM guidance
- Armor stone evaluated based on structural stability
 - <5% damage (stone displacement)</p>
 - Hudson equation; double layer armor
- Crest height
 - Allowable wave overtopping w/ no damage
- Toe scour
 - Potential wave
 - Current-induced scour

Avalon Seawall

Avalon Seawall Structure

- 3,000 ft rubble seawall
- New construction "over" existing
- 4-6 / 6-10 ton capstone
- 700-1,400 lb corestone
- Marine mattress
- Sand infill

Avalon Seawall

• Two rounds of bids

– Round 1: \$25 M

- Round 2: \$13 M

Avalon Seawall "VE"

- Toe scour design and structural feature modification
- Build with existing seawall in place

Avalon VE: Revised Toe Scour Design

- Original Design Conservative wide berm; -15 ft depth
 - Moderate to severe scour potential
 - Scour based on vertical wall empirical relationships
- Revised design; no berm; 12 ft depth
 - Low to moderate scour potential based on historical evidence
 - Consider sloping face, Reduce depth by 30%

Avalon VE: Revised Toe Scour Structure

- Change structural feature
 - Marine mattress scour apron
 - Reduce
 - Cost
 - excavation depth
 - Overall structure footprint

Avalon VE: Leave Existing

• Eliminate removal effort and risk

Sand infill

Sand Infill Design Original

NOTE: GAP BETWEEN NEW STONE/MARINE MATTRESS AND BULKHEAD SHOWN FOR CLARITY ONLY.

Sand Infill Design Revised

Avalon original - \$25M

TYPICAL SECTION-STA. 3+28 TO STA. 9+30

Avalon VE: \$13M

Hereford Seawall

Hereford Seawall Structure

- Consists of three schemes
 - 1,200 ft Deepwater stabilization
 - -2,400 ft New rubble seawall 3 5 T capstone
 - 5000 ft Rehab of existing seawall 2 T capstone
- 600 1000 lb corestone
- Marine mattress

Hereford Seawall Multiple Projects

- Rehabilitation
- Deepwater stabilization
- New Section

Hereford Seawall Rehabilitation Detail

Hereford Seawall Deepwater Stabilization Detail

Hereford Seawall New Seawall Detail

Marine Mattress Description

- Polyethylene geogrid basket
- Lined with geotextile
- Approximately 6-ft by 20-ft
- Overlap flap

Marine Mattress Detail

Marine Mattress

Marine Mattress Construction

Marine Mattress Construction

Marine Mattress Placement

Marine Mattress Advantages

- Instant Filter: Eliminate material quantity
- Flexible: conforms to under shape
- Stable placement in moving water
- Serves as scour apron
- Provides stable work area
- Provides cushion to work on

Seawall Construction Sequence

Seawall Finished Product

Avalon Seawall Action

Hereford Deepwater Stabilization

Deepwater Stabilization

Design Basis Deepwater Stabilization

- Geotechnical slope stability
- Current erosion

Deepwater Stabilization

- VE can lead to significant savings
- Consider practical site characteristics
 - Toe scour history
 - Existing groins withstood '62 storm
 - VE attributed existing failures to poor filter gradation, not scour

- Drawing representation
 - Square stones not available in large quantity
 - Proximity to bulkhead

- Use "Anchor" Toe
 Stone or Key-in Toe
 - Difficult to build with low resistance of outer stones
 - Marine mattress prohibits "embedding toe in sand"

- Evaluate single layer on existing flat surface
 - Difficult to achieve required interlock to ensure stable layer
 - Use concrete for raising existing cap

Lessons Learned Tolerance / Interlock

- Vary under-layer thickness
- Provide Contractor clear explanation
- Spec language: "The stones shall be closely fitted and interlocked...... All stone will be in close contact to assure no independent movement or sliding"
- Require test sections
 - Complete FIRST
 - Instill team approach

Lack of Interlock / Tolerance

Lack of Interlock / Tolerance

Lack of Interlock / Tolerance

- Consider Best Value Procurement: Stone setter is key in product
- Stone shape / availability
 - "Inter-layer" interlock
 - "Intra-layer" interlock
 - Tolerance

High Points

- Avalon Overall Quality
- Contractor innovation sonar imaging
- Design Involvement in Construction

Proposed Cross Section

Actual Cross Section

Seawall Finished Product

