Rapid Prototyping of Cutting-Edge Meteorological Technology: The ATEC 4DWX System

James F. Bowers
U.S. Army Dugway Proving Ground
Dugway, Utah 84022-5000

Scott P. Swerdlin and Thomas T. Warner
National Center for Atmospheric Research
Boulder, CO 80301
Agenda

- 4DWX System Overview
- 4DWX Forecast and Analysis Modeling Systems
- Coupled Model Applications
- Rapid Prototype Cycle
- Near-Term Enhancements
- Summary
4DWX System Overview

- System Objective: Provide next-generation meteorological support to Army RDT&E
- Development Approach: Transition research-grade technology to operational use through collaboration between operational users and research scientists/systems engineers
4DWX System Overview

• Major 4DWX Components:
 – High-resolution meteorological models
 – Data archival and retrieval system
 – Data and model-output displays (including web-based)
 – Coupled range applications models (sound, dispersion, etc.)
 – Automated thunderstorm forecast system (0-60 min)
Currently deployed 4DWX systems

Operational 4DWX sites
4DWX Forecast and Analysis Modeling Systems

- Real-Time Four-Dimensional Data Assimilation (RT-FDDA)
- Global Meteorology on Demand (GMOD)
- Variational Doppler Radar Analysis System (VDRAS)
- Variational Lidar Assimilation System (VLAS)
RT-FDDA Overview

• Based on Penn State/NCAR full-physics MM5 mesoscale meteorological model
• High resolution (1 to 3 km horizontal grid spacing) achieved through nested computational domains
• Analyses (“observation nudging”) of many types of meteorological observations and 48-hour forecasts updated every 3 hours
RT-FDDA: example model setup at Dugway

Domain 3 topography

Domain 3 snow cover

Domain 3 land use
Sample RTFDDA Output

Salt breeze at DPG
Velocity vectors and
Temperature (1500 LT)
Sample RT-FDDA output

DPG Forecast
Velocity vectors
and
Vertical motion
blue = downward
pink = upward
GMOD Overview

• Globally relocatable and reconfigurable by non-expert meteorologists
• Provides RT-FDDA forecast and analysis capabilities anywhere in the world
• Provides back-up when a range system fails
• Examples of applications
 – Missile launches in Hawaii
 – DTRA/DHS dispersion experiment in Oklahoma City
 – DARPA dispersion experiment in Washington DC
Doppler radar-based VDRAS

Doppler radars and lidars compute radial velocity and reflectivity. But for many applications, need full 3-D windfield.
VDRAS Overview

- Derives 3D wind fields from Doppler radar clear-air returns
- Uses Doppler radar radial velocities and reflectivities plus other available meteorological observations as input
- Four-dimensional variational (4DVAR) methodology fits a physics-based model to a time-series of observations
- Model extrapolated forward in time to produce a short-term (~30-min) forecast
4D-Variational Data Assimilation

Fit model to observations over a time window to minimize the difference between model trajectory and observations.
VDRAS winds for Washington D.C. area
VLAS: VDRAS algorithm adapted to Doppler lidar

CTI Doppler lidar

Radial velocity field with VLAS wind vectors: 70 m horizontal resolution in 7x7 km area
Coupled Model Applications

- RT-FDDA, VDRAS, or VLAS analyses or forecasts used as meteorological inputs to other models
- Example application: sound propagation at Aberdeen Test Center (ATC), Aberdeen Proving Ground, MD
Explosives testing causes neighborhood disturbances during periods of high sound propagation.
Solution: extract 1-D synthetic soundings from RT-FDDA forecasts

Soundings extracted from RT-FDDA forecasts, coupled to sound model provides sound propagation forecast
4DWX coupled-app guides test planning

Range forecaster analyzes sound intensity prediction, and recommends when to test on the following day
Rapid Prototype Cycle

- 4DWX enhancements constrained by
 - Hardware requirements (>100 processors per range) for 24/7 operational systems
 - Dependence on external data sources, which may fail
 - Variations in user requirements across ranges
 - Information security requirements
Rapid Prototype Cycle

- Development approach
 - Extensive user involvement in defining requirements and setting development priorities
 - Parallel tests of new products for 3-6 months before transition to operational systems
 - Standardization of system hardware, software, and data acquisition systems
 - Ongoing, iterative development to consider new user requirements and/or take advantage of recent advances in meteorology or computer technology
Near-Term Enhancements

- Transition from MM5 to next-generation Weather Research and Forecast (WRF) model
- Dynamic Integrated Forecast (DiCast) forecast system for 15-day point consensus forecasts (specific locations) from multiple weather models
- Operational ensemble mesoscale forecasts
Summary

- 4DWX provides Army test ranges with unique operational meteorological support capabilities
- Rapid transition of research-grade technology achieved by
 - Close, ongoing collaboration between developer and user
 - Ongoing, iterative development
 - Parallel tests of prototype and current systems before operational implementation