

UNMANNED AERIAL VEHICLE SURVIVABILITY INFLUENCE ON SYSTEM LIFE CYCLE COST

SURVICE Engineering Company 4695 Millennium Drive Belcamp, MD 21017

Chuck Pedriani <u>chuck.pedriani@survice.com</u> 410-273-7722

NDIA 8th Annual Systems Engineering Conference

1

OBJECTIVE

To present a methodology for use in the Systems Engineering process that assists decision makers in identifying the unmanned aerial vehicle survivability alternative that provides the lowest life cycle cost while meeting the operational need.

OUTLINE

BACKGROUND

- Systems Engineering
- •Survivability
- Unmanned Aerial Systems

METHODOLOGY DESCRIPTION

- Basic Premise
- Characteristics
- Description
- •EXAMPLE
 - Scenario Description
 - •Vignette Snapshot
 - Results

CONTRIBUTORS

BACKGROUND SYSTEMS ENGINEERING

DoD Directive 5000.1

Systems Engineering.Acquisition programs shall be managed through the application of a systems engineering approach that optimizes total system performance and minimized total ownership costs.

DoD Instruction 5000.2

Effective sustainment of weapon systems begins with the design and development of reliable and maintainable systems through the continuous application of a robust systems engineering methodology

Defense Acquisition Guidebook

Chapter 4 describes the systems engineering processes and the fundamentals of their Application to DOD acquisition.

THE METHODOLOGY DESCRIBED IN THIS PRESENTATION WAS CONCEIVED TO ASSIST SURVIVABILITY EVALUATIONS WITHIN THIS PROCESS

BACKGROUND WHAT IS SURVIVABILITY ?

- Survivability is the capability of a system/platform to avoid and/or withstand a <u>man-made hostile environment</u>. Survivability is broken down into two subsets, susceptibility and vulnerability.
 - Susceptibility is the inability of an aircraft to avoid being hit by one or more damage mechanisms.
 - Vulnerability is the inability of an aircraft to withstand the damage sustained from man-made threats.

BACKGROUND SURVIVABILITY

•Every combat system has survivability characteristics •Influenced by mission/threat - system design/configuration relationships to other systems

Survivability characteristics have a strong influence on Total System Cost
 Not enough survivability - lose assets and cannot complete mission
 Unnecessary survivability - creates affordability issues

•Survivability is important to any warfighting system

It must survive to perform the mission It protects the operator from harm It keeps the system affordable

ANY SYSTEMS LEVEL EVALUATION OF UAVs SHOULD INCLUDE A STRUCTURED, INTEGRATED ASSESSMENT OF SURVIVABILITY TO IDENTIFY AND DEVELOP THE BEST OVERALL CONFIGURATION

BACKGROUND UNMANNED AERIAL SYSTEMS

Source: DoD UAS Roadmap 2005 - 2030

Dragon Eye/BAI Aerosystems; AeroVironment/Marine Corps

Weight: 4.5 lb Length: 2.4 ft Wingspan: 3.8 ft Payload: 1 lb Ceiling: 1000 ft Radius: 2.5 nm Endurance: 45-60 min

RQ-4 Global Hawk/Northrop Grumman/Air Force

 Weight:
 26,750 lb

 Length:
 44.4 ft

 Wingspan:
 116.2 ft

 Payload:
 1950 lb

 Ceiling:
 65,000 ft

 Radius:
 5400 nm

 Endurance:
 32 hr

THE TRADE SPACE FOR SURVIVABILITY IS LARGE AND GROWING

BACKGROUND UNMANNED AERIAL SYSTEMS

Source: DoD UAS Roadmap 2005 - 2030

System	Aircraft Cost,FY04\$*	Aircraft Weight, Lb*	Payload Capacity, Lb	System Cost FY04\$	Number Acft/System
Dragon Eye	\$28.5K	3.5	1	\$130.3K	3
RQ-7A Shadow	\$0.39M	216	60	\$12.7M	4
RQ-2B Pioneer	\$0.65M	307	75	\$17.2M	5
RQ-8B Fire Scout	\$4.1M	1765	600	\$21.9M	4
RQ-5A Hunter	\$1.2M	1170	200	\$26.5M	8
MQ-1B Predator	\$2.7M	1680	450**	\$24.7M	4
MQ-9A Predator	\$5.2M	3050	750**	\$45.1M	4
RQ-4(Block 10) Global Hawk	\$19.0M	9200	1950	\$57.7M	1
RQ-4(Block 10) Global Hawk	\$26.5M	15400	3000	\$62.2M	1

*Aircraft costs are minus sensor cost, and aircraft weights are minus fuel and payload capacities ** Internal payload weight capacity only

- As cost and military worth go up, reducing losses becomes key
- Cost <u>AND</u> military worth must be quantified to support survivability goals

METHODOLOGY BASIC PREMISE

COST of SURVIVABILITY FEATURES

METHODOLOGY CHARACTERISTICS

•Encompass consideration of all aspects of survivability

•Threat, Mission, Performance, Mission Equipment, Survivability Enhancements, Network Functions

- •Executable within available time and resources.
- •Account for cost implications during normal and combat conditions.
- Methodology supports decision-making even when little is known or when changes are encountered

•Potential use as a capability evaluation tool

•Parametric analysis around inputs that are "soft"

•Analysis allows building block approach

- •Build on what we have without starting over
- Improve fidelity by evolution
- •What we know/don't know is always transparent

ARRIVE AT THE BEST TOTAL COST ESTIMATE POSSIBLE COMMENSURATE WITH THE INFORMATION, RESOURCES, AND TIME AVAILABLE.

METHODOLOGY DESCRIPTION

EXAMPLE SCENARIO DESCRIPTION

The sample analysis involves VTUAVs on a surveillance mission to locate threat RF missile sites.

- Threat Three batteries of short range RF missiles Each battery has three TELARs and a C2 vehicle. Batteries operate under strict control of the commander One squad of three soldiers with each of the nine TELARs and C2 vehicles for a total of 36 MANPADS. Operate autonomously.
- Friendly Three VTUAV systems, each with three VTUAVs and a ground control station. The UAVs fly at 100kts at an altitude of 1050m. Each has an EO/IR sensor and an LDRF. When the ground target is detected, the info is transmitted to the ground station which sends an attack aircraft. The RF signature was held a 10 Sqm and the IR signature was varied from 500W/sr to 1 W/sr. A degrade to the missile pk of 25%, 50% and 75% was applied to simulate an IRCM.

EXAMPLE VIGNETTE SNAPSHOT

EXAMPLE OVERALL RESULTS

Attrition results as a function of signature

SIGNATURE	RF Shots	IR Shots	RF hits	IR hits
500W/sr	2.43	17.10	0.93	4.33
50W/sr	2.80	16.50	0.87	4.50
5W/sr	2.33	16.87	1.00	4.63
1W/sr	1.93	6.43	1.00	1.73

Attrition results as a function of IRCM effectiveness

Pk Degrade	RF Shots	IR Shots	RF hits	IR hits
No Degrade	2.43	17.10	0.93	4.33
25%	2.57	18.50	0.93	3.87
50%	2.13	19.70	1.00	3.30
75%	1.97	21.70	0.97	2.00

EXAMPLE IRCM IMPROVEMENTS

	BASIC	ALQ-144	ADV JAMMERS	DIR ENERGY
Original Number of Mission Aircraft	9	9	9	9
Number of Mission Aircraft Lost	5.26	4.8	4.3	2.97
Mission Probability of Survival	0.41556	0.46667	0.52222	0.67000
Fleet Size	100	100	100	100
Number of Missions	90	90	90	90
Number of Losses	52.6	48	43	29.7
Number of Flight Hours/Mission	6	6	6	6
Development Cost (\$)				
Basic Platform	8,000,000	8,000,000	8,200,000	8,400,000
Mission Package	2,000,000	2,000,000	2,000,000	2,000,000
Survivability Enhancements	0	500,000	1,000,000	1,500,000
Sub Total	10,000,000	10,500,000	11,200,000	11,900,000
	0			
Unit Acquisition Cost (\$)				
Basic Platform	3,000,000	3,000,000	3,000,000	3,200,000
Mission Package	1,000,000	1,000,000	1,000,000	1,000,000
Survivability Enhancements	0	100,000	200,000	500,000
Sub-Total	610,400,000	606,800,000	600,600,000	609,590,000
Hourly Operational Cost (\$)				
Basic Platform	300	300	300	300
Mission Package	50	50	50	50
Survivability Enhancements	0	10	10	10
Sub Total	189,000	194,400	194,400	194,400
TOTAL SYSTEM COST (\$)	620,589,000	617,494,400	611,994,400	621,684,400

EXAMPLE EFFECTS OF IRCM IMPROVEMENTS

EXAMPLE SIGNATURE REDUCTION

	50 W/Sr	5 W/Sr	1 W/Sr	
Original Number of Mission Aircraft	9	9	9	
Number of Mission Aircraft Lost	5.37	5.63	2.73 0.69667 100	
Mission Probability of Survival	0.40333	0.37444 100		
Fleet Size	100			
Number of Missions	90	90	90	
Number of Losses	53.7	56.3	27.3	
Number of Flight Hours/Mission	6	6	6	
Development Cost (\$)				
Basic Platform	8,000,000	8,500,000	10,000,000	
Mission Package	2,000,000	2,000,000	2,000,000	
Survivability Enhancements	0	500,000	2,500,000	
Sub Total	10,000,000	11,000,000	14,500,000	
Unit Acquisition Cost (\$)				
Basic Platform	3,000,000	3,000,000	3,200,000	
Mission Package	1,000,000	1,000,000	1,000,000	
Survivability Enhancements	0	100,000	200,000	
Sub-Total	614,800,000	640,830,000	560,120,000	
Hourly Operational Cost (\$)				
Basic Platform	300	300	300	
Mission Package	50	50	50	
Survivability Enhancements	0	0	10	
Sub Total	189,000	189,000	194,400	
TOTAL SYSTEM COST (\$)	624,989,000	652,019,000	574,814,400	

EXAMPLE EFFECTS OF IR SIGNATURE REDUCTION

NOTE: EXAMPLE ONLY

CONTRIBUTORS

DR. GREG BORN MISSION MODELS greg.born@survice.com

MR. DAVE HALL INTEGRATED SURVIVABILTIY ASSESSMENT dave.hall@survice.com

DR. JIM WALBERT NETWORK ANALYSIS jim.walbert@survice.com

QUESTIONS?